#' Plot method for check DAGs
#'
#' The `plot()` method for the `performance::check_dag()` function.
#'
#' @param x A `check_dag` object.
#' @param size_point Numeric value specifying size of point geoms.
#' @param size_text Numeric value specifying size of text elements.
#' @param colors Character vector of length five, indicating the colors (in
#' hex-format) for different types of variables, which are assigned in following
#' order: `outcome`, `exposure`, `adjusted`, `unadjusted`, and `collider`.
#' @param which Character string indicating which plot to show. Can be either
#' `"all"`, `"current"` or `"required"`.
#' @param check_colliders Logical indicating whether to highlight colliders.
#' Set to `FALSE` if the algorithm to detect colliders is very slow.
#' @param effect Character string indicating which effect for the required model
#' is to be estimated. Can be either `"total"` or `"direct"`.
#' @param ... Currently not used.
#'
#' @return A ggplot2-object.
#'
#' @examplesIf require("ggdag", quietly = TRUE)
#' library(performance)
#' # incorrect adjustment
#' dag <- check_dag(
#' y ~ x + b + c,
#' x ~ b,
#' outcome = "y",
#' exposure = "x"
#' )
#' dag
#' plot(dag)
#'
#' # plot only model with required adjustments
#' plot(dag, which = "required")
#'
#' # collider-bias?
#' dag <- check_dag(
#' y ~ x + c + d,
#' x ~ c + d,
#' b ~ x,
#' b ~ y,
#' outcome = "y",
#' exposure = "x",
#' adjusted = "c"
#' )
#' plot(dag)
#'
#' # longer labels, automatic detection of outcome and exposure
#' dag <- check_dag(
#' QoL ~ age + education + gender,
#' age ~ education
#' )
#' plot(dag)
#' @export
plot.see_check_dag <- function(x,
size_point = 20,
size_text = 4.5,
colors = NULL,
which = "all",
effect = "total",
check_colliders = TRUE,
...) {
.data <- NULL
insight::check_if_installed(c("ggdag", "ggplot2"))
which <- match.arg(which, choices = c("all", "current", "required"))
effect <- match.arg(effect, choices = c("total", "direct"))
# get plot data
p1 <- p2 <- suppressWarnings(ggdag::dag_adjustment_sets(x, effect = effect))
adjusted_for <- attributes(x)$adjusted
# if we have multiple sets, we only need one for the current model
if (!is.null(p1$data$set) && insight::n_unique(p1$data$set) > 1) {
p1$data <- p1$data[p1$data$set == p1$data$set[1], ]
# rename set-variables
p2$data$set <- gsub("\\{(.*)\\}", "\\1", p2$data$set)
p2$data$set <- paste0("Adjusted for ", p2$data$set)
}
# for current plot, we need to update the "adjusted" column
p1$data$adjusted <- "unadjusted"
if (!is.null(adjusted_for)) {
p1$data$adjusted[p1$data$name %in% adjusted_for] <- "adjusted"
}
# tweak data
p1$data$type <- as.character(p1$data$adjusted)
if (check_colliders) {
p1$data$type[vapply(p1$data$name, ggdag::is_collider, logical(1), .dag = x)] <- "collider"
}
p1$data$type[p1$data$name == attributes(x)$outcome] <- "outcome"
p1$data$type[p1$data$name %in% attributes(x)$exposure] <- "exposure"
p1$data$type <- factor(p1$data$type, levels = c("outcome", "exposure", "adjusted", "unadjusted", "collider"))
p2$data$type <- as.character(p2$data$adjusted)
if (check_colliders) {
p2$data$type[vapply(p2$data$name, ggdag::is_collider, logical(1), .dag = x)] <- "collider"
}
p2$data$type[p2$data$name == attributes(x)$outcome] <- "outcome"
p2$data$type[p2$data$name %in% attributes(x)$exposure] <- "exposure"
p2$data$type <- factor(p2$data$type, levels = c("outcome", "exposure", "adjusted", "unadjusted", "collider"))
if (is.null(colors)) {
point_colors <- see_colors(c("yellow", "cyan", "blue grey", "red", "orange"))
} else if (length(colors) != 5) {
insight::format_error("`colors` must be a character vector with five color-values.")
} else {
point_colors <- colors
}
names(point_colors) <- c("outcome", "exposure", "adjusted", "unadjusted", "collider")
# these geoms are shared by both plots
common_layers <- list(
geom_point_borderless(
ggplot2::aes(fill = .data$type),
size = size_point
),
ggdag::geom_dag_edges(
ggplot2::aes(
xend = .data$xend,
yend = .data$yend,
edge_alpha = .data$adjusted
)
),
ggdag::scale_adjusted(),
ggdag::geom_dag_label(
ggplot2::aes(label = .data$name),
size = size_text
),
ggdag::theme_dag(
legend.text = ggplot2::element_text(size = 2.75 * size_text),
legend.position = "bottom",
legend.justification = c(0, 1)
),
ggplot2::scale_fill_manual(values = point_colors),
ggplot2::guides(
edge_alpha = "none",
fill = ggplot2::guide_legend(override.aes = list(size = size_point / 4))
),
ggdag::expand_plot(
expand_x = ggplot2::expansion(c(0.2, 0.2)),
expand_y = ggplot2::expansion(c(0.2, 0.2))
),
ggplot2::labs(fill = NULL)
)
# plot1 - current model
plot1 <- ggplot2::ggplot(p1$data, ggplot2::aes(x = .data$x, y = .data$y)) +
common_layers +
ggplot2::ggtitle("Current model")
# plot2 - required model
plot2 <- ggplot2::ggplot(p2$data, ggplot2::aes(x = .data$x, y = .data$y)) +
common_layers +
ggplot2::ggtitle(sprintf("Required model (%s effect)", effect))
# if we have multiple sets, we want to facet the second plot by sets
if (!is.null(p2$data$set) && insight::n_unique(p2$data$set) > 1) {
plot2 <- plot2 + ggplot2::facet_wrap(
~set,
scales = "free",
ncol = ceiling(sqrt(insight::n_unique(p2$data$set)))
)
}
if (which == "all") {
# fix legends - remove the legend that has fewer items, so all items
# in the legend are shown for the integrated plot
if (insight::n_unique(p1$data$type) > insight::n_unique(p2$data$type)) {
plot2 <- plot2 + ggplot2::theme(legend.position = "none")
} else {
plot1 <- plot1 + ggplot2::theme(legend.position = "none")
}
# plot
plots(plot1, plot2, n_rows = 1)
} else if (which == "current") {
plot1
} else {
plot2
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.