# library(hotspots2) # Having issues with cache_dir()
load_all()
library(purrrlyr)
library(foreach)
library(doParallel)
registerDoParallel(20)
# First, we'll load all datasets.
data(decadal)
data(change)
data(eid_metadata)
data(event_coverage)
data(continents)
drivers <- left_join(drivers, continents, by = "iso3")
# Set our directory name and the number of sample iterations we want to conduct.
model_name <- "asl_2050_continent"
sample_iter <- 1000
weighting_varname <- "pubs_fit"
brt_params <- list(tree.complexity = 3,
learning.rate = 0.0035,
n.trees = 35)
predictor_names <- c("pop",
"crop",
"past",
"pop_change",
"crop_change",
"past_change",
"earth1_trees_needl",
"earth2_trees_everg",
"earth3_trees_decid",
"earth4_trees_other",
"earth5_shrubs",
"earth6_veg_herba",
"earth7_veg_manag",
"earth8_veg_flood",
"earth9_urban",
# "earth10_snowice",
# "earth11_barren",
# "earth12_water",
"gens",
"mamdiv",
"poultry",
"livestock_mam",
"continent")
# Create output and cache directories.
current_cache_dir <- file.path(cache_dir(), model_name)
current_out_dir <- file.path(out_dir(), model_name)
dir.create(current_cache_dir, showWarnings = FALSE)
dir.create(current_out_dir, showWarnings = FALSE)
sink(file.path(current_out_dir, "info"))
cat("Model Run Parameters\n")
print(Sys.time())
print(model_name)
print(sample_iter)
print(brt_params)
sink()
# Sample grid cells according to weighting and join to predictors.
# Skip these steps if you just want to refit.
bsm_gridids <- sample_bsm_events(drivers, sample_iter, weighting_varname)
save(bsm_gridids, file = file.path(current_cache_dir, paste0(model_name, "_gridids.RData")))
# load(file.path(current_cache_dir, paste0(model_name, "_gridids.RData")))
bsm_events <- join_predictors(bsm_gridids, predictor_names)
save(bsm_events, file = file.path(current_cache_dir, paste0(model_name, "_events.RData")))
# You can pick up here if you want to re-fit the model.
# load(file.path(current_cache_dir, paste0(model_name, "_events.RData")))
bsm <- fit_brts_to_events(bsm_events, brt_params, predictor_names)
save(bsm, file = file.path(current_cache_dir, paste0(model_name, ".RData")))
# You can start here if you want to just output the plots again.
# load(file.path(current_cache_dir, paste0(model_name, "_events.RData")))
# load(file.path(current_cache_dir, paste0(model_name, ".RData")))
relative_influence_plots(bsm, model_name)
partial_dependence_plots(bsm, bsm_events, model_name)
partial_dependence_plot_truncated(bsm, bsm_events, model_name)
partial_dependence_plot_factors(bsm, bsm_events, model_name)
# Optional maps stuff
# quickmap(sum_presences(bsm_events), log(n))
# quickmap(sum_absences(bsm_events), log(n))
sink(file.path(current_out_dir, "summary"))
cat("Summary\n")
summarize_multibrt(bsm, .parallel = TRUE)
sink()
intsum <- interaction_summary_multibrt(bsm, .parallel = TRUE)
names <- c("past_change" = "Pasture Change",
"earth6_veg_herba" = "Herbaceous Veg.",
"earth9_urban" = "Urban/Built-up",
"crop" = "Cropland",
"mamdiv" = "Mammal Biodiversity",
"pop_change" = "Population Change",
"earth5_shrubs" = "Shrubs",
"earth7_veg_manag" = "Cultivated/Managed\nVeg.",
"earth12_water" = "Water",
"earth10_snowice" = "Snow/Ice",
"poultry" = "Poultry",
"earth11_barren" = "Barren",
"earth1_trees_needl" = "Evergreen/Deciduous\nNeedleleaf Trees",
"earth8_veg_flood" = "Regularly Flooded Veg.",
"earth3_trees_decid" = "Deciduous Broadleaf\nTrees",
"pop" = "Population",
"crop_change" = "Cropland Change",
"gens" = "Global Envir. Strat.",
"earth4_trees_other" = "Mixed/Other Trees",
"past" = "Pasture",
"earth2_trees_everg" = "Evergreen Broadleaf\nTrees",
"livestock_mam" = "Livestock Mammal\nHeadcount",
"pubs_fit" = "Reporting Effort",
"continent" = "Continent")
intsum$var1.names <- revalue(intsum$var1.names, replace = names)
intsum$var2.names <- revalue(intsum$var2.names, replace = names)
write.csv(intsum, file = file.path(current_out_dir, "interactions.csv"), row.names = FALSE)
# Write percent deviance explained to file
pde <- percent_deviance_explained(bsm)
sink(file.path(current_out_dir, "percent_deviance_explained"))
cat("Percent Deviance Explained\n")
mean(pde)
sd(pde)
pde %>%
quantile(c(0.05, 0.25, 0.5, 0.75, 0.95))
sink()
# Livestock mammal interaction plots
bsm[[1]]$gbm.call$predictor.names
inter_list <- map(bsm, plot.gbm,
i.var = c("livestock_mam", "continent"),
return.grid = TRUE,
type = "response")
inter_tbl <- bind_rows(inter_list, .id = "model") %>%
as_tibble()
seq1 <- seq(min(inter_tbl$livestock_mam), max(inter_tbl$livestock_mam), length.out = 101)
group_width = seq1[2]/2
seq2 <- seq1[-1] - group_width
to_plot <- inter_tbl %>%
mutate(mam_group = cut(livestock_mam, breaks = seq1, include.lowest = TRUE)) %>%
group_by(mam_group) %>%
nest() %>%
mutate(mam_midpoint = seq2) %>%
unnest(cols = "data") %>%
group_by(continent, mam_midpoint) %>%
summarize(mam_mean = mean(livestock_mam),
q05 = quantile(y, 0.05, names = FALSE, na.rm = TRUE),
q50 = quantile(y, 0.5, names = FALSE, na.rm = TRUE),
q95 = quantile(y, 0.95, names = FALSE, na.rm = TRUE))
ggplot(data = to_plot, aes(x = mam_mean)) +
geom_line(mapping = aes(y = q50, color = continent)) +
theme_bw(base_size = 11, base_family = "") +
labs(x = "Livestock Mammal Headcount",
y = "EID Event Risk Index",
title = "Livestock Mammal Headcount by Continent",
color = "Continent")
ggsave(file.path(current_out_dir, paste0(model_name, "_livestock_by_continent.png")),
height = 7, width = 7)
ggsave(file.path(current_out_dir, paste0(model_name, "_livestock_by_continent.pdf")),
height = 7, width = 7)
ggplot(data = to_plot, aes(x = mam_mean)) +
facet_wrap(~ continent, ncol = 3) +
geom_ribbon(mapping = aes(ymin = q05, ymax = q95, fill = continent), alpha = 0.5) +
geom_line(mapping = aes(y = q50, color = continent)) +
theme_bw(base_size = 11, base_family = "") +
labs(x = "Livestock Mammal Headcount",
y = "EID Event Risk Index (and 90% CI)",
title = "Livestock Mammal Headcount by Continent",
color = "Continent",
fill = "Continent")
ggsave(file.path(current_out_dir, paste0(model_name, "_livestock_by_continent_faceted.png")),
height = 7, width = 7)
ggsave(file.path(current_out_dir, paste0(model_name, "_livestock_by_continent_faceted.pdf")),
height = 7, width = 7)
to_plot_centered <- to_plot %>%
group_by(continent) %>%
mutate_at(vars(starts_with("q")), ~ . - mean(.))
ggplot(data = to_plot_centered, aes(x = mam_mean)) +
geom_line(mapping = aes(y = q50, color = continent)) +
theme_bw(base_size = 11, base_family = "") +
labs(x = "Livestock Mammal Headcount",
y = "EID Event Risk Index, Centered by Continent",
title = "Livestock Mammal Headcount by Continent",
color = "Continent")
ggsave(file.path(current_out_dir, paste0(model_name, "_livestock_by_continent_centered.png")),
height = 7, width = 7)
ggsave(file.path(current_out_dir, paste0(model_name, "_livestock_by_continent_centered.pdf")),
height = 7, width = 7)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.