tests/KAUST_competition_2021/test2_tlr_mle_900_100.R

#
#
# Copyright (c) 2017-2023 King Abdullah University of Science and Technology
# All rights reserved.
#
# ExaGeoStat-R is a software package provided by KAUST
#
#
#
# @file test2_tlr_mle_900_100.R
# ExaGeoStat R wrapper functions
#
# @version 1.2.0
#
# @author Faten Alamri
# @date 2021-1-26

library("assertthat")
library("exageostatr")                                           #Load ExaGeoStat-R lib.

dmetric         = "euclidean"                                   #0 --> Euclidean distance, 1--> great circle distance.
tlr_acc         = 7                                             #Approximation accuracy 10^-(acc)
tlr_maxrank     = 450                                           #Max Rank
#load(file="../data/Data1.rda")                                  #load data
#load(file="../data/90_10/XYZ_10K_15_0017526_23_1.rda")

load(file = "../../data/900_100/XYZ_100k_15_0021080_15.rda")

data=list("x" = as.numeric(Datasets2b$x), "y" = as.numeric(Datasets2b$y),
	  "z" = as.numeric(Datasets2b$Measure))                                       # Convert data for input

# Initiate exageostat instance
exageostat_init(hardware = list (ncores = 2, ngpus = 0, ts = 320, lts = 600,  pgrid = 1, qgrid = 1))

# Estimate MLE parameters with tile low rank method
result       = tlr_mle(data, "ugsm-s", tlr_acc, tlr_maxrank,  dmetric, optimization = 
		       list(clb = c(0.001, 0.001, 0.001), cub = c(5, 5,5 ), tol = 1e-4, max_iters = 13))
print(result)

# Finalize exageostat instance
exageostat_finalize()
ecrc/exageostatR documentation built on June 9, 2025, 9:06 p.m.