#' Power Calculations for Exact Test of a simple null hypothesis in a Bernoulli
#' experiment
#'
#' Compute power of test, or determine parameters to obtain target power.
#'
#' The procedure uses uniroot to find the root of a discontinuous function so
#' some errors may pop up due to the given setup that causes the root-finding
#' procedure to fail. Also, since exact binomial tests are used we have
#' discontinuities in the function that we use to find the root of but despite
#' this the function is usually quite stable.
#'
#' @param n Number of observations
#' @param p0 Probability under the null
#' @param pa Probability under the alternative
#' @param sig.level Significance level (Type I error probability)
#' @param power Power of test (1 minus Type II error probability)
#' @param alternative One- or two-sided test
#' @return Object of class \code{power.htest}, a list of the arguments
#' (including the computed one) augmented with method and note elements.
#' @author Claus Ekstrom \email{claus@@rprimer.dk}
#' @seealso \code{\link{binom.test}}
#' @keywords htest
#' @examples
#'
#' power_binom_test(n = 50, p0 = .50, pa = .75) ## => power = 0.971
#' power_binom_test(p0 = .50, pa = .75, power = .90) ## => n = 41
#' power_binom_test(n = 50, p0 = .25, power = .90, alternative="less") ## => pa = 0.0954
#'
#' @export
power_binom_test <- function(n = NULL, p0 = NULL, pa = NULL, sig.level = 0.05, power = NULL,
alternative = c("two.sided", "less", "greater")) {
if (sum(sapply(list(n, p0, pa, power, sig.level), is.null)) != 1)
stop("exactly one of 'n', 'p0', 'pa', 'power', and 'sig.level' must be NULL")
if (!is.null(sig.level) && !is.numeric(sig.level) || any(0 >
sig.level | sig.level > 1))
stop("'sig.level' must be numeric in [0, 1]")
alternative <- match.arg(alternative)
# Check boundary conditions!
# Think they should be okay
pfun <- function(n, p0, pa, sig.level, alternative) {
n <- ceiling(n)
power <- switch(alternative,
less = { # Slightly counterintuitive to get the border with
pbinom(qbinom(1-sig.level, size=n, prob=p0, lower.tail=FALSE)-1, size=n, prob=pa)
},
greater = {
pbinom(qbinom(1-sig.level, size=n, prob=p0), size=n, prob=pa, lower.tail=FALSE)
},
two.sided = {
# Stat by finding a large set of values that do contain the proper quantile/probability where
# These are intentionally a bit too large to reduce computations but still make sure all necessary values are in the set
lx <- qbinom(sig.level, size=n, prob=p0)
ux <- qbinom(sig.level, size=n, prob=p0, lower.tail=FALSE)
x <- c(seq(0,lx), seq(ux,n))
d <- dbinom(x, size=n, prob=p0)
# Order to rank the probabilities accodring to size (small to high)
ordd <- order(d)
# Calculate cumulative probabilities
cs <- cumsum(sort(d))
# Find position in x where the significance level is too much
xval <- which.min(cs<sig.level)-1
#cat("asdasd")
#print(ordd)
#print(c(xval, ordd[xval]))
# This position corresponds to this probability
ssh <- d[ordd[xval]]
#cat("Order of the cumsum match")
#print(ordd[xval])
#cat("SSH to match")
#print(ssh)
relErr <- 1 + 1e-07
m <- n*p0
if (xval==0)
return(0)
if (x[ordd[xval]] < m) {
i <- seq.int(from = ux, to = n)
y <- sum(dbinom(i, n, p0) <= ssh * relErr)
pbinom(x[ordd[xval]], size=n, prob=pa) + pbinom(n - y, size=n, prob=pa, lower.tail = FALSE)
} else {
i <- seq.int(from = 0, to = lx)
y <- sum(dbinom(i, n, p0) <= ssh * relErr)
pbinom(y-1, size=n, prob=pa) + pbinom(x[ordd[xval]]-1, n, pa, lower.tail = FALSE)
}
}
)
power
}
# p.body <- Vectorize(pfun)
# ppp <- body(p.body)
qqq <- quote({ do.call("mapply", c(FUN=pfun, list(n, p0, pa, sig.level, alternative), SIMPLIFY = TRUE,
USE.NAMES = TRUE)) })
if (is.null(power))
power <- eval(qqq)
else if (is.null(n)) {
ans <- uniroot(function(n) eval(qqq) - power, c(2, 1e+06))
# Make small correction for shooting low to ensure that the power is at least as desired
n <- ans$root + (ans$f.root<0)
}
else if (is.null(p0)) {
p0 <- switch(alternative,
less = {
uniroot(function(p0) eval(qqq) - power, c(1e-07, p0-1e-07))$root
},
greater = {
uniroot(function(p0) eval(qqq) - power, c(p0+1e-07, 1-1e-07))$root
},
two.sided = {
stop("Not making a lot of sense without some assumptions of symmetry or something")
uniroot(function(p0) eval(qqq) - power, c(1e-07, 1-1e-07))$root
}
)
}
else if (is.null(pa)) {
pa <- switch(alternative,
less = {
uniroot(function(pa) eval(qqq) - power, c(1e-07, p0-1e-07))$root
},
greater = {
uniroot(function(pa) eval(qqq) - power, c(p0+1e-07, 1-1e-07))$root
},
two.sided = {
stop("Not making a lot of sense without some assumptions of symmetry or something")
uniroot(function(pa) eval(qqq) - power, c(1e-07, 1-1e-07))$root
}
)
}
else if (is.null(sig.level)) {
sig.level <- switch(alternative,
less = {
uniroot(function(sig.level) eval(qqq) - power, c(1e-07, 1-1e-07))$root
},
greater = {
uniroot(function(sig.level) eval(qqq) - power, c(1e-07, 1-1e-07))$root
},
two.sided = {
stop("Not making a lot of sense without some assumptions of symmetry or something")
uniroot(function(sig.level) eval(qqq) - power, c(1e-07, 1-1e-07))$root
}
)
}
else stop("internal error", domain = NA)
NOTE <- NULL
METHOD <- "One-sample exact binomial power calculation"
structure(list(n = n, p0 = p0, pa = pa, sig.level = sig.level,
power = power, alternative = alternative, note = NOTE,
method = METHOD), class = "power.htest")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.