#' Internal functions for the MESS package
#'
#' @param o input geepack object from a geeglm fit.
#' @param beta The estimated parameters. If set to \code{NULL} then the parameter estimates are extracted from the model fit object o.
#' @param testidx Indices of the beta parameters that should be tested equal to zero
#' @param sas Logical. Should the SAS version of the score test be computed. Defaults to \code{FALSE}.
#' @author Claus Ekstrom \email{claus@@rprimer.dk}
#' @keywords manip
scorefct <- function(o, beta=NULL, testidx=NULL, sas=FALSE) {
# Check that ids are correctly ordered
if (!ordered.clusters(o$id)) {
stop("clusters in the gee model are not ordered and contiguous. They really should be since otherwise geepack will consider non-contiguous clusters with same id as different. Reorder your dataset or redefine the cluster id variable and run the gee fit again.")
}
if (any(o$weights != 1)) {
stop("Haven't thought about if there is a problem with weights so will not do any computations")
}
clusters <- unique(o$id)
nclusters <- length(clusters)
if (is.null(beta)) {
beta <- coef(o)
}
# Offsets handled correctly?
y <- o$y
x <- model.matrix(o)
linear.predictors <- x%*%beta
if (!is.null(o$offset))
linear.predictors <- linear.predictors + o$offset
mui <- o$family$linkinv(linear.predictors)
invert <- if ("MASS" %in% loadedNamespaces()) {
# MASS::ginv
sinv
} else { sinv }
myres <- lapply(clusters, function(cluster) {
# Individiuals in cluster
idx <- (o$id == cluster)
# Cluster size
csize <- sum(idx)
# Di is r*k
# Di <- t(x[idx,,drop=FALSE]) %*% MESS:::qdiag(o$family$mu.eta(linear.predictors[idx]), nrow=csize)
Di <- crossprod(x[idx,,drop=FALSE], diag(o$family$mu.eta(linear.predictors[idx]), nrow=csize))
A <- diag(sqrt(o$family$variance(mui[idx])), nrow=csize)
Rmat <- diag(csize)
Ralpha <- switch(o$corstr,
independence = Rmat,
exchangeable = matrix(rep(o$geese$alpha, csize^2), csize),
ar1 = o$geese$alpha^abs(row(Rmat) - col(Rmat)))
if (o$corstr=="exchangeable")
diag(Ralpha) <- 1
V <- outer(MESS::qdiag(A), MESS::qdiag(A))*Ralpha*o$geese$gamma # Ok
# V inverse
Vinv <- invert(V)
DiVinv <- tcrossprod(Di, Vinv)
list(score = DiVinv %*% (y[idx] - mui[idx]),
DUD = tcrossprod(DiVinv, Di))
})
## Speed improvement?
# S <- apply(sapply(myres, function(oo) oo[[1]]), 1, sum)
S <- rowSums(sapply(myres, function(oo) oo[[1]]))
Vsand <- Reduce("+", lapply(myres, function(oo) { tcrossprod(oo[[1]])})) # I_1
VDUD <- Reduce("+", lapply(myres, function(oo) { oo[[2]] })) # I_0
iVDUD <- invert(VDUD)
if(is.null(testidx)) {
cat("Should not really be here")
as.numeric(S %*% invert(invert(VDUD) %*% Vsand %*% invert(VDUD)) %*% S / nclusters)
} else {
if (sas) {
as.numeric(t(S) %*% iVDUD[,testidx] %*% invert( (iVDUD %*% Vsand %*% iVDUD)[testidx,testidx] ) %*% iVDUD[testidx,] %*% S)
}
else {
myvar <- Vsand[testidx,testidx] - Vsand[testidx, -testidx] %*% invert(Vsand[-testidx,-testidx]) %*% Vsand[-testidx,testidx]
as.numeric(t(S[testidx]) %*% invert( myvar ) %*% S[testidx])
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.