nu.svm.robust.RFE: nu.svm.robust.RFE noise constrained & recursive feature...

View source: R/MIXTURE.DEBUG_V0.1.R

nu.svm.robust.RFER Documentation

nu.svm.robust.RFE noise constrained & recursive feature extraction based support vector nu-regression it will solve the y = X*B problem, providing B>0

Description

nu.svm.robust.RFE noise constrained & recursive feature extraction based support vector nu-regression it will solve the y = X*B problem, providing B>0

Usage

nu.svm.robust.RFE(X, y, nu = c(0.25, 0.5, 0.75), minProp = 0.007, maxiter = 6)

Arguments

X

the signature matrix, a NxL matrix of N genes and L cell lines

y

a vector of bulk gene expression sample

nu

(float) the nu value, default nu = c(0.25,0.5,0.75)

minProp

float. noise threshold level

maxiter

default 6

Author(s)

Elmer A. Fernández


elmerfer/MIXTURE documentation built on Aug. 20, 2024, 8:03 p.m.