Here we reanalyze the MRSA phylogeny from Volz & Didelot, Systematic Biology 2018.
require(mlesky) treeMRSA <- ape::read.tree(system.file('mrsa.nwk', package = 'mlesky')) treeMRSA$root.time=1967.306 fit <- mlskygrid(treeMRSA) plot (fit, logy = FALSE)
The analysis above assumed the default smoothing parameter tau=1
.
We can use cross-validation to optimize this smoothing parameter:
fit <- mlskygrid(treeMRSA, tau = NULL, tau_lower = 1, tau_upper = 20, ncpu = 6) plot(fit,logy=FALSE)
We can use AIC to optimise res and then use the cross-validation to optimise tau:
res=optim_res_aic(treeMRSA,ncpu=6) print(res) fit <- mlskygrid(treeMRSA, tau = NULL, tau_lower = 1, tau_upper = 20, ncpu = 6,res=res) plot(fit,logy=FALSE)
Let's compare the three models:
fit <- mlskygrid(treeMRSA, tau = NULL, tau_lower = 1, tau_upper = 20, ncpu = 6,res=20,model=1) plot(fit,logy=FALSE) fit <- mlskygrid(treeMRSA, tau = NULL, tau_lower = 1, tau_upper = 20, ncpu = 6,res=20,model=2) plot(fit,logy=FALSE) fit <- mlskygrid(treeMRSA, tau = NULL, tau_lower = 1, tau_upper = 20, ncpu = 6,res=20,model=3) plot(fit,logy=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.