View source: R/calculate_efficiency.R
calculate_efficiency_bytargetid | R Documentation |
See calibration vignette for example of usage.
calculate_efficiency_bytargetid(
cq_df,
formula = cq ~ log2(dilution) + biol_rep,
use_prep_types = "+RT"
)
cq_df |
a data frame with cq (quantification cycle) data, 1 row per well Must have columns prep_type, target_id, cq, dilution. Only prep_type=="+RT" columns are used. |
formula |
formula to use for log-log regression fit. Default value assumes multiple biological replicates, cq ~ log2(dilution) + biol_rep. If only a single Biological Replicate, change to cq ~ log2(dilution). If multiple sample_ids, change to cq ~ log2(dilution) + sample_id. See ?formula for background and help. |
use_prep_types |
prep_type column values to use, default "+RT" for RT-qPCR. By default, this includes only reverse-transcribed values in the efficiency estimation, so excludes negative controls such as no-template and no-RT. To skip this filtering step, set use_prep_types=NA. |
Note efficiency is given in ratio, not per cent; multiply by 100 for that.
data frame with columns: target_id, efficiency, efficiency.sd, r.squared.
calculate_efficiency
# create simple dilution dataset for two target_ids with two biological reps
dilution_tibble <- tibble(target_id = rep(c("T_1",
"T_2"), each = 8),
well_row = rep(c("A",
"B"), each = 8),
well_col = rep(1:8, 2),
well = paste0(well_row, well_col),
dilution = rep(c(1, 0.1, 0.001, 0.0001), 4),
cq = c(1, 3, 4, 6, 1, 3, 5, 7,
4, 5, 6, 7, 3, 7, 8, 9),
biol_rep = rep(c(1, 1, 1, 1, 2, 2, 2, 2), 2),
prep_type = "+RT")
# calculate primer efficiency for multiple targets
#----- use case 1: include difference across replicates in model
dilution_tibble |>
calculate_efficiency_bytargetid()
#----- use case 2: ignore difference across replicates
dilution_tibble |>
calculate_efficiency_bytargetid(formula = cq ~ log2(dilution))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.