Verlet-class: Verlet ODE solver class

Description Usage Arguments Examples

Description

Verlet ODE solver class

Verlet generic

Verlet class constructor ODE

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
Verlet(ode, ...)

## S4 method for signature 'Verlet'
init(object, stepSize, ...)

## S4 method for signature 'Verlet'
getRateCounter(object, ...)

## S4 method for signature 'Verlet'
step(object, ...)

## S4 method for signature 'ODE'
Verlet(ode, ...)

Arguments

ode

an ODE object

...

additional parameters

object

a class object

stepSize

size of the step

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# ++++++++++++++++++++++++++++++++++++++++++++++++++  example: KeplerEnergyApp.R
# Demostration of the use of the Verlet ODE solver
#

importFromExamples("KeplerEnergy.R") # source the class Kepler

KeplerEnergyApp <- function(verbose = FALSE) {
    # initial values
    x  <- 1
    vx <- 0
    y  <- 0
    vy <- 2 * pi
    dt <- 0.01
    tol <- 1e-3
    particle <- KeplerEnergy()

    # Two ways of initializing the ODE object
      # particle <- init(particle, c(x, vx, y, vy, 0))
    init(particle) <- c(x, vx, y, vy, 0)

    odeSolver <- Verlet(particle)

    # Two ways of initializing the solver
      # odeSolver <- init(odeSolver, dt)
    init(odeSolver) <-  dt

    particle@odeSolver <- odeSolver
    initialEnergy      <- getEnergy(particle)
    rowVector <- vector("list")
    i <- 1
    while (getTime(particle) <= 1.20) {
        rowVector[[i]] <- list(t  = getState(particle)[5],
                               x  = getState(particle)[1],
                               vx = getState(particle)[2],
                               y  = getState(particle)[3],
                               vy = getState(particle)[4],
                               E  = getEnergy(particle))
        particle <- doStep(particle)
        energy   <- getEnergy(particle)
        i <- i + 1
    }
    DT <- data.table::rbindlist(rowVector)
    return(DT)
}

solution <- KeplerEnergyApp()
plot(solution)

# +++++++++++++++++++++++++++++++++++++++++++++++++++   application:  Logistic.R
# Simulates the logistic equation
importFromExamples("Logistic.R")

# Run the application
LogisticApp <- function(verbose = FALSE) {
    x  <- 0.1
    vx <- 0
    r  <- 2        # Malthusian parameter (rate of maximum population growth)
    K  <- 10.0     # carrying capacity of the environment
    dt   <- 0.01; tol  <- 1e-3; tmax <- 10

    population <- Logistic()                # create a Logistic ODE object

    # Two ways of initializing the object
      # population <- init(population, c(x, vx, 0), r, K)
    init(population) <-  list(initState = c(x, vx, 0),
                              r = r,
                              K = K)

    odeSolver <- Verlet(population)        # select the solver

    # Two ways of initializing the solver
      # odeSolver <- init(odeSolver, dt)
    init(odeSolver) <-  dt

    population@odeSolver <- odeSolver
    # setSolver(population) <-  odeSolver

    rowVector <- vector("list")
    i <- 1
    while (getTime(population) <= tmax) {
        rowVector[[i]] <- list(t = getTime(population),
                               s1 = getState(population)[1],
                               s2 = getState(population)[2])
        population <- doStep(population)
        i <- i + 1
    }
    DT <- data.table::rbindlist(rowVector)
    return(DT)
}
# show solution
solution <- LogisticApp()
plot(solution)
# ++++++++++++++++++++++++++++++++++++++++++++++++++  example: KeplerEnergyApp.R
# Demostration of the use of the Verlet ODE solver
#

importFromExamples("KeplerEnergy.R") # source the class Kepler

KeplerEnergyApp <- function(verbose = FALSE) {
    # initial values
    x  <- 1
    vx <- 0
    y  <- 0
    vy <- 2 * pi
    dt <- 0.01
    tol <- 1e-3
    particle <- KeplerEnergy()

    # Two ways of initializing the ODE object
      # particle <- init(particle, c(x, vx, y, vy, 0))
    init(particle) <- c(x, vx, y, vy, 0)

    odeSolver <- Verlet(particle)

    # Two ways of initializing the solver
      # odeSolver <- init(odeSolver, dt)
    init(odeSolver) <-  dt

    particle@odeSolver <- odeSolver
    initialEnergy      <- getEnergy(particle)
    rowVector <- vector("list")
    i <- 1
    while (getTime(particle) <= 1.20) {
        rowVector[[i]] <- list(t  = getState(particle)[5],
                               x  = getState(particle)[1],
                               vx = getState(particle)[2],
                               y  = getState(particle)[3],
                               vy = getState(particle)[4],
                               E  = getEnergy(particle))
        particle <- doStep(particle)
        energy   <- getEnergy(particle)
        i <- i + 1
    }
    DT <- data.table::rbindlist(rowVector)
    return(DT)
}

solution <- KeplerEnergyApp()
plot(solution)

# +++++++++++++++++++++++++++++++++++++++++++++++++++   application:  Logistic.R
# Simulates the logistic equation
importFromExamples("Logistic.R")

# Run the application
LogisticApp <- function(verbose = FALSE) {
    x  <- 0.1
    vx <- 0
    r  <- 2        # Malthusian parameter (rate of maximum population growth)
    K  <- 10.0     # carrying capacity of the environment
    dt   <- 0.01; tol  <- 1e-3; tmax <- 10

    population <- Logistic()                # create a Logistic ODE object

    # Two ways of initializing the object
      # population <- init(population, c(x, vx, 0), r, K)
    init(population) <-  list(initState = c(x, vx, 0),
                              r = r,
                              K = K)

    odeSolver <- Verlet(population)        # select the solver

    # Two ways of initializing the solver
      # odeSolver <- init(odeSolver, dt)
    init(odeSolver) <-  dt

    population@odeSolver <- odeSolver
    # setSolver(population) <-  odeSolver

    rowVector <- vector("list")
    i <- 1
    while (getTime(population) <= tmax) {
        rowVector[[i]] <- list(t = getTime(population),
                               s1 = getState(population)[1],
                               s2 = getState(population)[2])
        population <- doStep(population)
        i <- i + 1
    }
    DT <- data.table::rbindlist(rowVector)
    return(DT)
}
# show solution
solution <- LogisticApp()
plot(solution)

f0nzie/rODE documentation built on May 14, 2019, 10:34 a.m.