WeightedModulePartitionSpectral: Modules detection by spectral clustering

Description Usage Arguments Value Author(s) References Examples

Description

Module detection based on the spectral clustering algorithm, which mainly solve the eigendecomposition on Laplacian matrix

Usage

1
2
WeightedModulePartitionSpectral(datExpr, foldername, indicatename, GeneNames,
  power = 6, nn = 10, k = 2)

Arguments

datExpr

gene expression profile, rows are samples and columns genes

foldername

where to store the clusters

indicatename

normally a specific tag of condition

GeneNames

normally the gene official names to replace the colnames of datExpr

power

the power parameter of WGCNA, W_ij=|cor(x_i,x_j)|^power

nn

the number of nearest neighbor, used to construct the affinity matrix

k

the number of clusters(modules)

Value

None

Author(s)

Dong Li, dxl466@cs.bham.ac.uk

References

Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007): 395-416.

Examples

1
2
3
4
5
6
7
8
9
data(synthetic)
ResultFolder <- 'ForSynthetic' # where middle files are stored
indicator <- 'X'     # indicator for data profile 1
GeneNames <- colnames(datExpr1)
WeightedModulePartitionSpectral(datExpr1,ResultFolder,indicator,
GeneNames,k=5)
truemodule <- c(rep(1,100),rep(2,100),rep(3,100),rep(4,100),rep(5,100))
#mymodule <- getPartition(ResultFolder)
#randIndex(table(mymodule,truemodule),adjust=F)

fairmiracle/MODA documentation built on May 16, 2019, 9:59 a.m.