knitr::opts_chunk$set(collapse = TRUE, comment = "#>")
Loading the epimedtools library
library(epimedtools)
Creating a new study.
study = create_study()
The .CEL.gz files are stored into two directories the ctrl directory and the kc directory:
kc_cel_filedir = system.file( "extdata/trscr_raw_kc", package = "epimeddata" ) print(kc_cel_filedir) ctrl_cel_filedir = system.file( "extdata/trscr_raw_ctrl", package = "epimeddata" ) print(ctrl_cel_filedir) study$cel_filedirs = c(kc_cel_filedir, ctrl_cel_filedir) print(study$cel_filedirs)
The experimental grouping of kc samples is laoded before loading data.
exp_grp_filename = system.file( "extdata/trscr_raw_kc", "expgrp_kc.csv.gz", package = "epimeddata" ) exp_grp = read.table(file=gzfile(exp_grp_filename), stringsAsFactors=FALSE, sep=";", header=TRUE) rownames(exp_grp) = paste(exp_grp$sample, ".CEL.gz", sep="") study$exp_grp = exp_grp
The RMA normalized data matrix is extract using the get_data method.
head(study$get_data())
The origin of sample is injected into the experimental grouping thank to the column orig.
study$get_exp_grp()
This study deals with data obtained using the GPL570 platform.
study$platform_name = "GPL570"
Plot density of expression for this 1-sample dataset.
plot(density(study$get_data()[,1]))
Plot density of expression for this 1-sample dataset using ratio.
ctrl_sample_names = rownames(study$exp_grp)[study$get_exp_grp()$orig == "trscr_raw_ctrl"] plot(density(study$get_ratio(ctrl_sample_names)[,1]))
Saving the study on the file system.
study$save("/tmp/study.rds")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.