rm(list = ls())
library(nimble)
library(igraph)
library(coda)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggridges)
library(reshape2)
e1_approx <- nimbleFunction(
run = function(x = double(1)) {
returnType(double(1))
A <- log((0.56146 / x + 0.65) * (1 + x))
B <- x^4 * exp(7.7 * x) * (2 + x)^3.7
return((A^-7.7 + B)^-0.13)
})
NIMprospect5 <- nimbleFunction(
run = function(N = double(0),Cab = double(0),Car = double(0), Cw = double(0), Cm = double(0),
dataspec_p5 = double(2),talf = double(1),t12 = double(1),t21 = double(1), Nwl = double(0)) {
cc <- matrix(NA,nrow = 5,ncol = 1)
k <- numeric(length = Nwl)
Cbrown <- 0
cc[1,1] <- Cab / N
cc[2,1] <- Car / N
cc[3,1] <- Cbrown / N
cc[4,1] <- Cw / N
cc[5,1] <- Cm / N
k[] <- dataspec_p5[,] %*% cc[,]
trans <- (1 - k)*exp(-k) + k^2 *e1_approx(k)
trans[trans < 0] <- 0
ralf <- 1 - talf
r12 <- 1 - t12
r21 <- 1 - t21
denom <- 1 - (r21 ^ 2) * (trans ^ 2)
Ta <- talf * trans * t21 / denom
Ra <- ralf + r21 * trans * Ta
tt <- t12 * trans * t21 / denom
rr <- r12 + r21 * trans * tt
gt1 <- rr + tt >= 1
tgt1 <- tt[gt1]
Tsub <- 0*tt
Rsub <- 0*tt
r <- 0*tt
t <- 0*tt
Tsub[gt1] <- tgt1 / (tgt1 + (1 - tgt1) * (N - 1))
Rsub[gt1] <- 1 - Tsub[gt1]
inf <- rr == 0 | tt == 0
Tsub[inf] <- 0
Rsub[inf] <- 0
r <- rr[!gt1 & !inf]
t <- tt[!gt1 & !inf]
D <- sqrt((1 + r + t) * (1 + r - t) * (1 - r + t) * (1 - r - t))
r2 <- r ^ 2
t2 <- t ^ 2
va <- (1 + r2 - t2 + D) / (2 * r)
vb <- (1 - r2 + t2 + D) / (2 * t)
vbNN <- vb ^ (N - 1)
vbNN2 <- vbNN ^ 2
va2 <- va ^ 2
denomx <- va2 * vbNN2 - 1
Rsub[!gt1 & !inf] <- va * (vbNN2 - 1) / denomx
Tsub[!gt1 & !inf] <- vbNN * (va2 - 1) / denomx
denomy <- 1 - Rsub * rr
reflectance <- Ra + Ta * Rsub * tt / denomy
returnType(double(1))
if (N < 1.1 | Car < 0 | Cab < 0 | Cm <= 0 | Cw <0) {
return(-9999*(reflectance**0))
} else{
return(reflectance)
}
})
run_prospect5 <- nimbleCode({
reflectance_T_PNM[1:Nwl] <- NIMprospect5(Nmean,
Cabmean,
Carmean,
Cwmean,
Cmmean,
dataspec_p5[,], talf[],t12[],t21[], Nwl)
reflectance_T_FTS[1:Nwl] <- NIMprospect5(Nmean + beta_N,
Cabmean + beta_Cab,
Carmean + beta_Car,
Cwmean + beta_Cw,
Cmmean + beta_Cm,
dataspec_p5[,], talf[],t12[],t21[], Nwl)
reflectance_L_PNM[1:Nwl] <- NIMprospect5(Nmean + alpha_N,
Cabmean + alpha_Cab,
Carmean + alpha_Car,
Cwmean + alpha_Cw,
Cmmean + alpha_Cm,
dataspec_p5[,], talf[],t12[],t21[], Nwl)
reflectance_L_FTS[1:Nwl] <- NIMprospect5(Nmean + alpha_N + beta_N + gamma_N,
Cabmean + alpha_Cab + beta_Cab + gamma_Cab,
Carmean + alpha_Car + beta_Car + gamma_Car,
Cwmean + alpha_Cw + beta_Cw + gamma_Cw,
Cmmean + alpha_Cm + beta_Cm + gamma_Cm,
dataspec_p5[,], talf[],t12[],t21[], Nwl)
creflectance[,1] <- reflectance_T_PNM[1:Nwl]
creflectance[,2] <- reflectance_T_FTS[1:Nwl]
creflectance[,3] <- reflectance_L_PNM[1:Nwl]
creflectance[,4] <- reflectance_L_FTS[1:Nwl]
for (i in 1:N_T_PNM){
for (j in 1:Nwl){
obs_reflectance[j,i] ~ dnorm(creflectance[j,1], sd = Standard.Dev)
}
}
for (i in 1:N_T_FTS){
for (j in 1:Nwl){
obs_reflectance[j,i + (N_T_PNM)] ~ dnorm(creflectance[j,2], sd = max(0,Standard.Dev + beta_SD))
}
}
for (i in 1:N_L_PNM){
for (j in 1:Nwl){
obs_reflectance[j,i + (N_T_PNM + N_T_FTS)] ~ dnorm(creflectance[j,3], sd = max(0,Standard.Dev + alpha_SD))
}
}
for (i in 1:N_L_FTS){
for (j in 1:Nwl){
obs_reflectance[j,i + (N_T_PNM + N_T_FTS + N_L_PNM)] ~ dnorm(creflectance[j,4], sd = max(0,Standard.Dev + alpha_SD + beta_SD + gamma_SD))
}
}
Nmean ~ dunif(1.,5)
Cabmean ~ dunif(0,200)
Carmean ~ dunif(0,100)
Cwmean ~ dunif(0.,0.1)
Cmmean ~ dunif(0.,0.1)
Standard.Dev ~ dunif(0,1)
# GF effect
alpha_N ~ dunif(-1,1)
alpha_Cab ~ dunif(-400,400)
alpha_Car ~ dunif(-200,200)
alpha_Cw ~ dunif(-0.2,0.2)
alpha_Cm ~ dunif(-0.2,0.2)
alpha_SD ~ dunif(-0.2,0.2)
# Site effect
beta_N ~ dunif(-1,1)
beta_Cab ~ dunif(-400,400)
beta_Car ~ dunif(-200,200)
beta_Cw ~ dunif(-0.2,0.2)
beta_Cm ~ dunif(-0.2,0.2)
beta_SD ~ dunif(-0.2,0.2)
# Interaction effect
gamma_N ~ dunif(-1,1)
gamma_Cab ~ dunif(-400,400)
gamma_Car ~ dunif(-200,200)
gamma_Cw ~ dunif(-0.2,0.2)
gamma_Cm ~ dunif(-0.2,0.2)
gamma_SD ~ dunif(-0.2,0.2)
})
WLa <- 400
WLb <- 2500
Delta_WL <- 20
WLs <- seq(WLa,WLb,Delta_WL)
pos <- which(400:2500 %in% WLs)
Nwl <- length(pos)
data.spectra <- readRDS("./data/All.spectra.ID.RDS") %>% group_by(GF,Species,Ind,site) %>% mutate(ind.id = cur_group_id()) %>%
group_by(GF,Species,Ind,site,name) %>% mutate(leaf.id = cur_group_id()) %>%
mutate(value2 = value,
value = case_when(wv %in% c(400:680,800:2500) ~ value,
TRUE ~ NA_real_))
data.spectra_T_PNM <- data.spectra %>% filter(GF == "Tree",
site == "PNM") %>%
filter(wv %in% WLs) %>% arrange(wv) %>% ungroup() %>%
dplyr::select(value,value2)
data.spectra_T_FTS <- data.spectra %>% filter(GF == "Tree",
site == "FTS") %>%
filter(wv %in% WLs) %>% arrange(wv) %>% ungroup() %>%
dplyr::select(value,value2)
data.spectra_L_PNM <- data.spectra %>% filter(GF == "Liana",
site == "PNM") %>%
filter(wv %in% WLs) %>% arrange(wv) %>% ungroup() %>%
dplyr::select(value,value2)
data.spectra_L_FTS <- data.spectra %>% filter(GF == "Liana",
site == "FTS") %>%
filter(wv %in% WLs) %>% arrange(wv) %>% ungroup() %>%
dplyr::select(value,value2)
N = 5
N_T_PNM <- ncol((data.spectra_T_PNM %>% pull(value) %>% matrix(ncol = length(WLs)) %>% t()))
N_T_FTS <- ncol((data.spectra_T_FTS %>% pull(value) %>% matrix(ncol = length(WLs)) %>% t()))
N_L_PNM <- ncol((data.spectra_L_PNM %>% pull(value) %>% matrix(ncol = length(WLs)) %>% t()))
N_L_FTS <- ncol((data.spectra_L_FTS %>% pull(value) %>% matrix(ncol = length(WLs)) %>% t()))
Data <- list(obs_reflectance = cbind((data.spectra_T_PNM %>% pull(value) %>% matrix(ncol = length(WLs)) %>% t()),
(data.spectra_T_FTS %>% pull(value) %>% matrix(ncol = length(WLs)) %>% t()),
(data.spectra_L_PNM %>% pull(value) %>% matrix(ncol = length(WLs)) %>% t()),
(data.spectra_L_FTS %>% pull(value) %>% matrix(ncol = length(WLs)) %>% t())))
Data2 <- list(obs_reflectance = cbind((data.spectra_T_PNM %>% pull(value2) %>% matrix(ncol = length(WLs)) %>% t()),
(data.spectra_T_FTS %>% pull(value2) %>% matrix(ncol = length(WLs)) %>% t()),
(data.spectra_L_PNM %>% pull(value2) %>% matrix(ncol = length(WLs)) %>% t()),
(data.spectra_L_FTS %>% pull(value2) %>% matrix(ncol = length(WLs)) %>% t())))
p5_data <- rrtm:::dataspec_p5[pos,1:5]
Constants <- list(Nwl = Nwl,
N_T_PNM = N_T_PNM,
N_T_FTS = N_T_FTS,
N_L_PNM = N_L_PNM,
N_L_FTS = N_L_FTS,
talf = rrtm:::p45_talf[pos],
t12 = rrtm:::p45_t12[pos],
t21 = rrtm:::p45_t21[pos],
dataspec_p5 = p5_data)
Inits <- list(Nmean = 2,
Cabmean = 40,
Carmean = 10,
Cwmean = 0.01,
Cmmean = 0.01,
Standard.Dev = 0.05,
alpha_N = 0,
alpha_Cab = 0,
alpha_Car = 0,
alpha_Cw = 0,
alpha_Cm = 0,
alpha_SD = 0,
beta_N = 0,
beta_Cab = 0,
beta_Car = 0,
beta_Cw = 0,
beta_Cm = 0,
beta_SD = 0,
gamma_N = 0,
gamma_Cab = 0,
gamma_Car = 0,
gamma_Cw = 0,
gamma_Cm = 0,
gamma_SD = 0)
P5model <- nimbleModel(run_prospect5,
dimensions = list(dataspec_p5 = c(Nwl,5),
talf = Nwl,
t12 = Nwl,
t21 = Nwl,
reflectance_T_PNM = c(Nwl),
reflectance_T_FTS = c(Nwl),
reflectance_L_PNM = c(Nwl),
reflectance_L_FTS = c(Nwl),
creflectance = c(Nwl,4)),
data = Data,
constants = Constants,
debug = FALSE,
inits = Inits)
P5model$initializeInfo()
Nchains = 1
mcmc.out <- nimbleMCMC(code = P5model,
constants = Constants,
monitors = c("Nmean","Cabmean","Carmean","Cwmean","Cmmean","Standard.Dev",
"alpha_N","alpha_Cab","alpha_Car","alpha_Cw","alpha_Cm","alpha_SD",
"beta_N","beta_Cab","beta_Car","beta_Cw","beta_Cm","beta_SD",
"gamma_N","gamma_Cab","gamma_Car","gamma_Cw","gamma_Cm","gamma_SD"),
data = Data,
inits = Inits,
nburnin = 2000,
nchains = Nchains,
niter = 10000,
summary = TRUE,
WAIC = TRUE,
samplesAsCodaMCMC = TRUE)
saveRDS(mcmc.out,"./outputs/mcmc.RDS")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.