rm(list = ls())
library(nimble)
library(igraph)
library(coda)
library(dplyr)
library(tidyr)
library(ggplot2)
e1_approx <- nimbleFunction(
run = function(x = double(1)) {
returnType(double(1))
A <- log((0.56146 / x + 0.65) * (1 + x))
B <- x^4 * exp(7.7 * x) * (2 + x)^3.7
return((A^-7.7 + B)^-0.13)
})
NIMprospect5 <- nimbleFunction(
run = function(N = double(0),Cab = double(0),Car = double(0), Cw = double(0), Cm = double(0),
dataspec_p5 = double(2),talf = double(1),t12 = double(1),t21 = double(1), Nwl = double(0)) {
cc <- matrix(NA,nrow = 5,ncol = 1)
k <- numeric(length = Nwl)
Cbrown <- 0
cc[1,1] <- Cab / N
cc[2,1] <- Car / N
cc[3,1] <- Cbrown / N
cc[4,1] <- Cw / N
cc[5,1] <- Cm / N
k[] <- dataspec_p5[,] %*% cc[,]
trans <- (1 - k)*exp(-k) + k^2 *e1_approx(k)
trans[trans < 0] <- 0
ralf <- 1 - talf
r12 <- 1 - t12
r21 <- 1 - t21
denom <- 1 - (r21 ^ 2) * (trans ^ 2)
Ta <- talf * trans * t21 / denom
Ra <- ralf + r21 * trans * Ta
tt <- t12 * trans * t21 / denom
rr <- r12 + r21 * trans * tt
gt1 <- rr + tt >= 1
tgt1 <- tt[gt1]
Tsub <- 0*tt
Rsub <- 0*tt
r <- 0*tt
t <- 0*tt
Tsub[gt1] <- tgt1 / (tgt1 + (1 - tgt1) * (N - 1))
Rsub[gt1] <- 1 - Tsub[gt1]
inf <- rr == 0 | tt == 0
Tsub[inf] <- 0
Rsub[inf] <- 0
r <- rr[!gt1 & !inf]
t <- tt[!gt1 & !inf]
D <- sqrt((1 + r + t) * (1 + r - t) * (1 - r + t) * (1 - r - t))
r2 <- r ^ 2
t2 <- t ^ 2
va <- (1 + r2 - t2 + D) / (2 * r)
vb <- (1 - r2 + t2 + D) / (2 * t)
vbNN <- vb ^ (N - 1)
vbNN2 <- vbNN ^ 2
va2 <- va ^ 2
denomx <- va2 * vbNN2 - 1
Rsub[!gt1 & !inf] <- va * (vbNN2 - 1) / denomx
Tsub[!gt1 & !inf] <- vbNN * (va2 - 1) / denomx
denomy <- 1 - Rsub * rr
reflectance <- Ra + Ta * Rsub * tt / denomy
returnType(double(1))
# print(c(N,Cab, Car, Cbrown, Cw, Cm,mean(reflectance)))
return(reflectance)
})
run_prospect5 <- nimbleCode({
reflectance_T[1:Nwl] <- NIMprospect5(Nmean,Cabmean,Carmean,Cwmean,Cmmean,
dataspec_p5[,], talf[],t12[],t21[], Nwl)
reflectance_L[1:Nwl] <- NIMprospect5(max(1.1,Nmean + alpha_N),
max(10,Cabmean + alpha_Cab),
max(5,Carmean + alpha_Car),
max(0.0001,Cwmean + alpha_Cw),
max(0.0001,Cmmean + alpha_Cm),
dataspec_p5[,], talf[],t12[],t21[], Nwl)
for (i in 1:Nsamples){
creflectance[,i] <- reflectance_T[1:Nwl]
for (j in 1:Nwl){
obs_reflectance[j,i] ~ dnorm(creflectance[j,i], sd = Standard.Dev)
}
}
for (i in 1:Nsamples){
creflectance[,Nsamples + i] <- reflectance_L[1:Nwl]
for (j in 1:Nwl){
obs_reflectance[j,Nsamples + i] ~ dnorm(creflectance[j,Nsamples + i], sd = max(0.00001,Standard.Dev + alpha_SD))
}
}
Nmean ~ dunif(1.,5)
Cabmean ~ dunif(0,100)
Carmean ~ dunif(0,50)
Cwmean ~ dunif(0.,0.1)
Cmmean ~ dunif(0.,0.1)
Standard.Dev ~ dunif(0,1)
alpha_N ~ dunif(-1,1)
alpha_Cab ~ dunif(-30,30)
alpha_Car ~ dunif(-20,20)
alpha_Cw ~ dunif(-0.02,0.02)
alpha_Cm ~ dunif(-0.02,0.02)
alpha_SD ~ dunif(-0.1,0.1)
})
Nleaves <- 10
WLa <- 400
WLb <- 2500
Delta_WL <- 20
WLs <- seq(WLa,WLb,Delta_WL)
pos <- which(400:2500 %in% WLs)
Nwl <- length(pos)
Constants <- list(Nsamples = Nleaves,
Nwl = Nwl,
talf = rrtm:::p45_talf[pos],
t12 = rrtm:::p45_t12[pos],
t21 = rrtm:::p45_t21[pos],
dataspec_p5 = rrtm:::dataspec_p5[pos,1:5])
Ntrue <- 2 ; Cabtrue <- 40 ; Cartrue <- 20 ; Cwtrue <- 0.01 ; Cmtrue <- 0.01
Ntrue_L <- 1.5 ; Cabtrue_L <- 30 ; Cartrue_L <- 15 ; Cwtrue_L <- 0.005 ; Cmtrue_L <- 0.005
fac <- 4
Nall <- pmax(1.1,rnorm(Nleaves,Ntrue,Ntrue/fac))
Caball <- pmax(10,rnorm(Nleaves,Cabtrue,Cabtrue/fac))
Carall <- pmax(5,rnorm(Nleaves,Cartrue,Cartrue/fac))
Cwall <- pmax(0,rnorm(Nleaves,Cwtrue,Cwtrue/fac))
Cmall <- pmax(0,rnorm(Nleaves,Cmtrue,Cmtrue/fac))
Nall_L <- pmax(1.1,rnorm(Nleaves,Ntrue_L,Ntrue/fac))
Caball_L <- pmax(10,rnorm(Nleaves,Cabtrue_L,Cabtrue/fac))
Carall_L <- pmax(5,rnorm(Nleaves,Cartrue_L,Cartrue/fac))
Cwall_L <- pmax(0,rnorm(Nleaves,Cwtrue_L,Cwtrue/fac))
Cmall_L <- pmax(0,rnorm(Nleaves,Cmtrue_L,Cmtrue/fac))
Data <- list(obs_reflectance = cbind(matrix(unlist(lapply(1:length(Nall),function(ileaf){
rrtm::prospect5(N = Nall[ileaf],
Cab = Caball[ileaf],
Car = Carall[ileaf],
Cbrown = 0,
Cw = Cwall[ileaf],
Cm = Cmall[ileaf])[["reflectance"]][pos]})),ncol = Nleaves),
matrix(unlist(lapply(1:length(Nall),function(ileaf){
rrtm::prospect5(N = Nall_L[ileaf],
Cab = Caball_L[ileaf],
Car = Carall_L[ileaf],
Cbrown = 0,
Cw = Cwall_L[ileaf],
Cm = Cmall_L[ileaf])[["reflectance"]][pos]})),ncol = Nleaves)))
matplot(WLs,Data$obs_reflectance[,1:Nleaves],type = 'l',col = "darkgreen")
matlines(WLs,Data$obs_reflectance[,Nleaves + (1:Nleaves)],type = 'l',col = "darkblue")
Inits <- list(Nmean = Ntrue,
Cabmean = Cabtrue,
Carmean = Cartrue,
Cwmean = Cwtrue,
Cmmean = Cmtrue,
alpha_N = 0,
alpha_Cab = 0,
alpha_Car = 0,
alpha_Cw = 0,
alpha_Cm = 0)
P5model <- nimbleModel(run_prospect5,
dimensions = list(dataspec_p5 = c(Nwl,5),
talf = Nwl,
t12 = Nwl,
t21 = Nwl,
reflectance_T = c(Nwl),
reflectance_L = c(Nwl),
creflectance = c(Nwl,Nleaves*2)),
data = Data,
constants = Constants,
debug = FALSE,
inits = Inits)
P5model$initializeInfo()
# compiled_P5model <- compileNimble(P5model,
# showCompilerOutput = TRUE)
Nchains = 2
mcmc.out <- nimbleMCMC(code = P5model,
constants = Constants,
monitors = c("Nmean","Cabmean","Carmean","Cwmean","Cmmean","Standard.Dev",
"alpha_N","alpha_Cab","alpha_Car","alpha_Cw","alpha_Cm","alpha_SD"),
data = Data,
inits = Inits,
nburnin = 10000,
nchains = Nchains,
niter = 100000,
summary = TRUE,
WAIC = FALSE,
samplesAsCodaMCMC = TRUE)
MCMCsamples <- mcmc.out$samples
param <- MCMCsamples[,1:12]
plot(param[,1])
# pairs(as.matrix(param[,c(1:5)]), pch = '.')
hist(param[[1]][,7])
Nsimu <- 1000
if (Nchains == 1){
pos.simu <- sample(1:nrow(MCMCsamples),Nsimu)
param_all <- MCMCsamples[pos.simu,1:12]
} else {
pos.simu <- sample(1:nrow(MCMCsamples[[1]]),Nsimu)
param_all <- do.call(rbind,lapply(1:Nchains,function(i) MCMCsamples[[i]][pos.simu,1:12]))
}
Simu <- cbind(matrix(unlist(lapply(1:Nsimu,function(ileaf){
rrtm::prospect5(N = param_all[ileaf,5],
Cab = param_all[ileaf,1],
Car = param_all[ileaf,2],
Cbrown = 0,
Cw = param_all[ileaf,4],
Cm = param_all[ileaf,3])[["reflectance"]][pos]})),ncol = Nsimu),
matrix(unlist(lapply(1:Nsimu,function(ileaf){
rrtm::prospect5(N = param_all[ileaf,5] + param_all[ileaf,11],
Cab = param_all[ileaf,1] + param_all[ileaf,7],
Car = param_all[ileaf,2] + param_all[ileaf,8],
Cbrown = 0,
Cw = param_all[ileaf,4] + param_all[ileaf,10],
Cm = param_all[ileaf,3] + param_all[ileaf,9])[["reflectance"]][pos]})),ncol = Nsimu))
matplot(WLs,Simu[,1:Nsimu],type = 'l',col = "darkgreen",ylim = c(0,max(c(Data$obs_reflectance,Simu))*1.1))
matlines(WLs,Simu[,Nsimu + (1:Nsimu)],type = 'l',col = "darkblue")
matlines(WLs,rowMeans(Data$obs_reflectance[,1:10]),col = "red",lwd = 2)
matlines(WLs,rowMeans(Data$obs_reflectance[,10 + (1:10)]),col = "red",lwd = 2)
# matlines(WLs,Data$obs_reflectance[,1:Nleaves],type = 'l',col = "darkgreen")
# matlines(WLs,Data$obs_reflectance[,Nleaves + (1:Nleaves)],type = 'l',col = "darkblue")
df_l <- data.frame(mcmc.out$samples$chain1) %>% rename(N = Nmean,
Cab = Cabmean,
Car = Carmean,
Cw = Cwmean,
Cm = Cmmean) %>% dplyr::select(c("N","Cab","Car","Cw","Cm","Standard.Dev",
"alpha_N","alpha_Cab","alpha_Car","alpha_Cw","alpha_Cm","alpha_SD")) %>%
pivot_longer(cols = c("N","Cab","Car","Cw","Cm","Standard.Dev",
"alpha_N","alpha_Cab","alpha_Car","alpha_Cw","alpha_Cm","alpha_SD"),
names_to = "param",
values_to = "value")
params_true <- data.frame(N = mean(Nall),
Cab = mean(Caball),
Car = mean(Carall),
Cw = mean(Cwall),
Cm = mean(Cmall),
alpha_N = mean(Nall_L - Nall),
alpha_Cab = mean(Caball_L - Caball),
alpha_Car = mean(Carall_L - Carall),
alpha_Cw = mean(Cwall_L - Cwall),
alpha_Cm = mean(Cmall_L - Cmall)) %>% pivot_longer(cols = c("N","Cab","Car","Cw","Cm",
"alpha_N","alpha_Cab","alpha_Car","alpha_Cw","alpha_Cm"),
names_to = "param",
values_to = "value")
params_all <- data.frame(N = Nall,
Cab = Caball,
Car = Carall,
Cw = Cwall,
Cm = Cmall,
alpha_N = Nall_L - Nall,
alpha_Cab = Caball_L - Caball,
alpha_Car = Carall_L - Carall,
alpha_Cw = Cwall_L - Cwall,
alpha_Cm = Cmall_L - Cmall) %>% pivot_longer(cols = c("N","Cab","Car","Cw","Cm",
"alpha_N","alpha_Cab","alpha_Car","alpha_Cw","alpha_Cm"),
names_to = "param",
values_to = "value")
ggplot(df_l,aes(value)) +
geom_histogram(aes(y= ..density..),bins = 60, alpha = 0.4, color = "darkgrey") +
geom_point(data = params_true,
aes(x = value,y = 0), color = 'red') +
geom_point(data = params_all,
aes(x = value,y = 0), color = 'red',shape = "|",size = 4) +
facet_wrap(~param, scales = "free") +
theme_bw()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.