rm(list = ls())
library(nimble)
library(igraph)
library(coda)
library(dplyr)
library(tidyr)
library(ggplot2)
e1_approx <- nimbleFunction(
run = function(x = double(1)) {
returnType(double(1))
A <- log((0.56146 / x + 0.65) * (1 + x))
B <- x^4 * exp(7.7 * x) * (2 + x)^3.7
return((A^-7.7 + B)^-0.13)
})
NIMprospect5 <- nimbleFunction(
run = function(N = double(0),Cab = double(0),Car = double(0), Cw = double(0), Cm = double(0),
dataspec_p5 = double(2),talf = double(1),t12 = double(1),t21 = double(1), Nwl = double(0)) {
cc <- matrix(NA,nrow = 5,ncol = 1)
k <- numeric(length = Nwl)
Cbrown <- 0
cc[1,1] <- Cab / N
cc[2,1] <- Car / N
cc[3,1] <- Cbrown / N
cc[4,1] <- Cw / N
cc[5,1] <- Cm / N
k[] <- dataspec_p5[,] %*% cc[,]
trans <- (1 - k)*exp(-k) + k^2 *e1_approx(k)
trans[trans < 0] <- 0
ralf <- 1 - talf
r12 <- 1 - t12
r21 <- 1 - t21
denom <- 1 - (r21 ^ 2) * (trans ^ 2)
Ta <- talf * trans * t21 / denom
Ra <- ralf + r21 * trans * Ta
tt <- t12 * trans * t21 / denom
rr <- r12 + r21 * trans * tt
gt1 <- rr + tt >= 1
tgt1 <- tt[gt1]
Tsub <- 0*tt
Rsub <- 0*tt
r <- 0*tt
t <- 0*tt
Tsub[gt1] <- tgt1 / (tgt1 + (1 - tgt1) * (N - 1))
Rsub[gt1] <- 1 - Tsub[gt1]
inf <- rr == 0 | tt == 0
Tsub[inf] <- 0
Rsub[inf] <- 0
r <- rr[!gt1 & !inf]
t <- tt[!gt1 & !inf]
D <- sqrt((1 + r + t) * (1 + r - t) * (1 - r + t) * (1 - r - t))
r2 <- r ^ 2
t2 <- t ^ 2
va <- (1 + r2 - t2 + D) / (2 * r)
vb <- (1 - r2 + t2 + D) / (2 * t)
vbNN <- vb ^ (N - 1)
vbNN2 <- vbNN ^ 2
va2 <- va ^ 2
denomx <- va2 * vbNN2 - 1
Rsub[!gt1 & !inf] <- va * (vbNN2 - 1) / denomx
Tsub[!gt1 & !inf] <- vbNN * (va2 - 1) / denomx
denomy <- 1 - Rsub * rr
reflectance <- Ra + Ta * Rsub * tt / denomy
returnType(double(1))
if (N < 1.1 | Car < 0 | Cab < 0 | Cm <= 0 | Cw <0) {
return(-9999*(reflectance**0))
} else{
return(reflectance)
}
})
run_prospect5 <- nimbleCode({
reflectance_T_PNM[1:Nwl] <- NIMprospect5(Nmean,
Cabmean,
Carmean,
Cwmean,
Cmmean,
dataspec_p5[,], talf[],t12[],t21[], Nwl)
reflectance_T_FTS[1:Nwl] <- NIMprospect5(Nmean + beta_N,
Cabmean + beta_Cab,
Carmean + beta_Car,
Cwmean + beta_Cw,
Cmmean + beta_Cm,
dataspec_p5[,], talf[],t12[],t21[], Nwl)
reflectance_L_PNM[1:Nwl] <- NIMprospect5(Nmean + alpha_N,
Cabmean + alpha_Cab,
Carmean + alpha_Car,
Cwmean + alpha_Cw,
Cmmean + alpha_Cm,
dataspec_p5[,], talf[],t12[],t21[], Nwl)
reflectance_L_FTS[1:Nwl] <- NIMprospect5(Nmean + alpha_N + beta_N,
Cabmean + alpha_Cab + beta_Cab,
Carmean + alpha_Car + beta_Car,
Cwmean + alpha_Cw + beta_Cw,
Cmmean + alpha_Cm + beta_Cm,
dataspec_p5[,], talf[],t12[],t21[], Nwl)
creflectance[,1] <- reflectance_T_PNM[1:Nwl]
for (j in 1:Nwl){
obs_reflectance[j,1] ~ dnorm(creflectance[j,1], sd = Standard.Dev)
}
creflectance[,2] <- reflectance_T_FTS[1:Nwl]
for (j in 1:Nwl){
obs_reflectance[j,2] ~ dnorm(creflectance[j,2], sd = max(0,Standard.Dev + beta_SD))
}
creflectance[,3] <- reflectance_L_PNM[1:Nwl]
for (j in 1:Nwl){
obs_reflectance[j,3] ~ dnorm(creflectance[j,3], sd = max(0,Standard.Dev + alpha_SD))
}
creflectance[,4] <- reflectance_L_FTS[1:Nwl]
for (j in 1:Nwl){
obs_reflectance[j,4] ~ dnorm(creflectance[j,4], sd = max(0,Standard.Dev + alpha_SD + beta_SD))
}
Nmean ~ dunif(1.,5)
Cabmean ~ dunif(0,200)
Carmean ~ dunif(0,100)
Cwmean ~ dunif(0.,0.1)
Cmmean ~ dunif(0.,0.1)
Standard.Dev ~ dunif(0,1)
# GF effect
alpha_N ~ dunif(-1,1)
alpha_Cab ~ dunif(-400,400)
alpha_Car ~ dunif(-200,200)
alpha_Cw ~ dunif(-0.2,0.2)
alpha_Cm ~ dunif(-0.2,0.2)
alpha_SD ~ dunif(-0.2,0.2)
# Site effect
beta_N ~ dunif(-1,1)
beta_Cab ~ dunif(-400,400)
beta_Car ~ dunif(-200,200)
beta_Cw ~ dunif(-0.2,0.2)
beta_Cm ~ dunif(-0.2,0.2)
beta_SD ~ dunif(-0.2,0.2)
})
WLa <- 400
WLb <- 2500
Delta_WL <- 5
WLs <- seq(WLa,WLb,Delta_WL)
pos <- which(400:2500 %in% WLs)
Nwl <- length(pos)
data.spectra <- readRDS("./data/All.spectra.ID.RDS") %>% group_by(GF,Species,Ind,site) %>% mutate(ind.id = cur_group_id()) %>%
group_by(GF,Species,Ind,site,name) %>% mutate(leaf.id = cur_group_id()) %>%
mutate(value2 = value,
value = case_when(wv %in% c(500:680,800:2500) ~ value,
TRUE ~ NA_real_))
data.spectra_T_PNM <- data.spectra %>% filter(GF == "Tree",
site == "PNM") %>%
group_by(wv) %>% filter(wv %in% WLs) %>% arrange(wv) %>%
summarise(value = mean(value),
value2 = mean(value2),
.groups = "drop") %>% dplyr::select(value,value2)
data.spectra_T_FTS <- data.spectra %>% filter(GF == "Tree",
site == "FTS") %>%
group_by(wv) %>% filter(wv %in% WLs) %>% arrange(wv) %>%
summarise(value = mean(value),
value2 = mean(value2),
.groups = "drop") %>% dplyr::select(value,value2)
data.spectra_L_PNM <- data.spectra %>% filter(GF == "Liana",
site == "PNM") %>%
group_by(wv) %>% filter(wv %in% WLs) %>% arrange(wv) %>%
summarise(value = mean(value),
value2 = mean(value2),
.groups = "drop") %>% dplyr::select(value,value2)
data.spectra_L_FTS <- data.spectra %>% filter(GF == "Liana",
site == "FTS") %>%
group_by(wv) %>% filter(wv %in% WLs) %>% arrange(wv) %>%
summarise(value = mean(value),
value2 = mean(value2),
.groups = "drop") %>% dplyr::select(value,value2)
Data <- list(obs_reflectance = cbind(data.spectra_T_PNM %>% pull(value),
data.spectra_T_FTS %>% pull(value),
data.spectra_L_PNM %>% pull(value),
data.spectra_L_FTS %>% pull(value)))
Data2 <- list(obs_reflectance = cbind(data.spectra_T_PNM %>% pull(value2),
data.spectra_T_FTS %>% pull(value2),
data.spectra_L_PNM %>% pull(value2),
data.spectra_L_FTS %>% pull(value2)))
par(mfrow = c(1,1))
matplot(WLs,Data2$obs_reflectance[,1:2],type = 'l',col = "darkgreen")
matlines(WLs,Data2$obs_reflectance[,3:4],type = 'l',col = "darkblue")
Constants <- list(Nwl = Nwl,
talf = rrtm:::p45_talf[pos],
t12 = rrtm:::p45_t12[pos],
t21 = rrtm:::p45_t21[pos],
dataspec_p5 = rrtm:::dataspec_p5[pos,1:5])
Inits <- list(Nmean = 2,
Cabmean = 40,
Carmean = 10,
Cwmean = 0.01,
Cmmean = 0.01,
Standard.Dev = 0.05,
alpha_N = 0,
alpha_Cab = 0,
alpha_Car = 0,
alpha_Cw = 0,
alpha_Cm = 0,
alpha_SD = 0,
beta_N = 0,
beta_Cab = 0,
beta_Car = 0,
beta_Cw = 0,
beta_Cm = 0,
beta_SD = 0)
P5model <- nimbleModel(run_prospect5,
dimensions = list(dataspec_p5 = c(Nwl,5),
talf = Nwl,
t12 = Nwl,
t21 = Nwl,
reflectance_T_PNM = c(Nwl),
reflectance_T_FTS = c(Nwl),
reflectance_L_PNM = c(Nwl),
reflectance_L_FTS = c(Nwl),
creflectance = c(Nwl,4)),
data = Data,
constants = Constants,
debug = FALSE,
inits = Inits)
P5model$initializeInfo()
Nchains = 2
mcmc.out <- nimbleMCMC(code = P5model,
constants = Constants,
monitors = c("Nmean","Cabmean","Carmean","Cwmean","Cmmean","Standard.Dev",
"alpha_N","alpha_Cab","alpha_Car","alpha_Cw","alpha_Cm","alpha_SD",
"beta_N","beta_Cab","beta_Car","beta_Cw","beta_Cm","beta_SD"),
data = Data,
inits = Inits,
nburnin = 2000,
nchains = Nchains,
niter = 10000,
summary = TRUE,
WAIC = TRUE,
samplesAsCodaMCMC = TRUE)
MCMCsamples <- mcmc.out$samples
param <- MCMCsamples[,1:18]
param_X = 4
plot(param[,c(0,6,12) + param_X])
pairs(as.matrix(param[,c(0,6,12) + param_X]), pch = '.')
Nsimu <- 1000
if (Nchains == 1){
pos.simu <- sample(1:nrow(MCMCsamples),Nsimu)
param_all <- MCMCsamples[pos.simu,1:18]
} else {
pos.simu <- sample(1:nrow(MCMCsamples[[1]]),Nsimu)
param_all <- do.call(rbind,lapply(1:Nchains,function(i) MCMCsamples[[i]][pos.simu,1:18]))
}
Simu <- cbind(
# Tree, PNM
matrix(unlist(lapply(1:Nsimu,function(ileaf){
rrtm::prospect5(N = param_all[ileaf,5],
Cab = param_all[ileaf,1],
Car = param_all[ileaf,2],
Cbrown = 0,
Cw = param_all[ileaf,4],
Cm = param_all[ileaf,3])[["reflectance"]][pos]})),ncol = Nsimu),
# Tree, FTS
matrix(unlist(lapply(1:Nsimu,function(ileaf){
rrtm::prospect5(N = param_all[ileaf,5] + param_all[ileaf,17],
Cab = param_all[ileaf,1] + param_all[ileaf,13],
Car = param_all[ileaf,2] + param_all[ileaf,14],
Cbrown = 0,
Cw = param_all[ileaf,4] + param_all[ileaf,16],
Cm = param_all[ileaf,3] + param_all[ileaf,15])[["reflectance"]][pos]})),ncol = Nsimu),
# Liana, PNM
matrix(unlist(lapply(1:Nsimu,function(ileaf){
rrtm::prospect5(N = param_all[ileaf,5] + param_all[ileaf,11],
Cab = param_all[ileaf,1] + param_all[ileaf,7],
Car = param_all[ileaf,2] + param_all[ileaf,8],
Cbrown = 0,
Cw = param_all[ileaf,4] + param_all[ileaf,10],
Cm = param_all[ileaf,3] + param_all[ileaf,9])[["reflectance"]][pos]})),ncol = Nsimu),
# Liana, FTS
matrix(unlist(lapply(1:Nsimu,function(ileaf){
rrtm::prospect5(N = param_all[ileaf,5] + param_all[ileaf,11] + param_all[ileaf,17],
Cab = param_all[ileaf,1] + param_all[ileaf,7] + param_all[ileaf,13],
Car = param_all[ileaf,2] + param_all[ileaf,8] + param_all[ileaf,14],
Cbrown = 0,
Cw = param_all[ileaf,4] + param_all[ileaf,10] + param_all[ileaf,16],
Cm = param_all[ileaf,3] + param_all[ileaf,9] + param_all[ileaf,15])[["reflectance"]][pos]})),ncol = Nsimu))
# par(mfrow = c(1,1))
# test1 <- rrtm::prospect5(N = 2,
# Cab = 70,
# Car = 10,
# Cbrown = 0,
# Cw = 0.015,
# Cm = 0.008)[["reflectance"]]
# test2 <- NIMprospect5(N = 2,
# Cab = 70,Car = 10,Cw = 0.015,Cm = 0.008,
# dataspec_p5 = rrtm:::dataspec_p5[pos,1:5],talf = rrtm:::p45_talf[pos],
# t12 = rrtm:::p45_t12[pos],t21 = rrtm:::p45_t21[pos], Nwl = Nwl)
# plot(400:2500,test1,type = 'l')
# lines(WLs,test2, col = "red")
par(mfrow = c(2,2))
ileaf = 1:1000
hist(param_all[ileaf,0 + param_X]) # Tree, PNM
hist(param_all[ileaf,0 + param_X] + param_all[ileaf,0 + param_X + 12]) # Tree, FTS
hist(param_all[ileaf,0 + param_X] + param_all[ileaf,0 + param_X + 6]) # Liana, PNM
hist(param_all[ileaf,0 + param_X] + param_all[ileaf,0 + param_X + 6] +
param_all[ileaf,0 + param_X + 12]) # Liana, FTS
# PNM
par(mfrow = c(1,2))
matplot(WLs,Simu[,1:Nsimu],type = 'l',col = "darkgreen",ylim = c(0,0.6))
matlines(WLs,Simu[,2*Nsimu + (1:Nsimu)],type = 'l',col = "darkblue")
matlines(WLs,Data2$obs_reflectance[,c(1,3)],type = 'l',col = c("black","black"),lwd = 2,lty = c(1,2))
# FTS
matplot(WLs,Simu[,Nsimu + (1:Nsimu)],type = 'l',col = "darkgreen",ylim = c(0,0.6))
matlines(WLs,Simu[,3*Nsimu + (1:Nsimu)],type = 'l',col = "darkblue")
matlines(WLs,Data2$obs_reflectance[,c(2,4)],type = 'l',col = c("black","black"),lwd = 2,lty = c(1,2))
df_l <- data.frame(mcmc.out$samples$chain1) %>% rename(N = Nmean,
Cab = Cabmean,
Car = Carmean,
Cw = Cwmean,
Cm = Cmmean) %>% dplyr::select(c("N","Cab","Car","Cw","Cm","Standard.Dev",
"alpha_N","alpha_Cab","alpha_Car","alpha_Cw","alpha_Cm","alpha_SD",
"beta_N","beta_Cab","beta_Car","beta_Cw","beta_Cm","beta_SD")) %>%
pivot_longer(cols = c("N","Cab","Car","Cw","Cm","Standard.Dev",
"alpha_N","alpha_Cab","alpha_Car","alpha_Cw","alpha_Cm","alpha_SD",
"beta_N","beta_Cab","beta_Car","beta_Cw","beta_Cm","beta_SD"),
names_to = "param",
values_to = "value") %>% mutate(param = factor(param,
levels = c("N","Cab","Car","Cw","Cm","Standard.Dev",
"alpha_N","alpha_Cab","alpha_Car","alpha_Cw","alpha_Cm","alpha_SD",
"beta_N","beta_Cab","beta_Car","beta_Cw","beta_Cm","beta_SD")))
vlines <- bind_rows(list(df_l %>% filter(param %in% c("N","Cab","Car","Cw","Cm")) %>% group_by(param) %>% summarise(m = mean(value),
.groups = "keep"),
df_l %>% filter(param %in% c("alpha_N","alpha_Cab","alpha_Car","alpha_Cw","alpha_Cm")) %>% group_by(param) %>% summarise(m = 0),
df_l %>% filter(param %in% c("beta_N","beta_Cab","beta_Car","beta_Cw","beta_Cm")) %>% group_by(param) %>% summarise(m = 0)))
ggplot(df_l %>% filter(param %in% c("N","Cab","Car","Cw","Cm","Standard.Dev",
"alpha_N","alpha_Cab","alpha_Car","alpha_Cw","alpha_Cm","alpha_SD",
"beta_N","beta_Cab","beta_Car","beta_Cw","beta_Cm","beta_SD")),
aes(value)) +
geom_histogram(aes(y= ..density..),bins = 60, alpha = 0.4, color = "darkgrey") +
geom_vline(data = vlines,
aes(xintercept = m)) +
facet_wrap(~param, scales = "free",nrow = 3) +
theme_bw()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.