#! /usr/bin/env Rscript
##########################################################################################
## INTRODUCTION AND HELP
##
##----------------------------------------------------------------------------------------
## This is the main settings file for the moving knots project with multi-shrinkage model.
##
##---USER INPUTS--------------------------------------------------------------------------
## Variables commented with all CAPITAL LETTERS are user defined variables.
##
##---OUTPUTS------------------------------------------------------------------------------
## Variables named with the format of "OUT.xxx" are the final outputs
##
##---HOW TO SPEEDUP-----------------------------------------------------------------------
## You may recompile R from source with an optimized BLAS (Basic Linear Algebra
## Subprograms), e.g ATLAS(BSD-style license), GotoBLAS(BSD-style license ), Intel Math
## Kernel Library(free for personal use). All of them support multi-threaded computing via
## openMP. Read the R-admin guide and individual BLAS users guide to enable it.
##
##---------------------------------------------------------------------------------------
## AUTHOR: Feng Li, Department of statistics, Stockholm University, Sweden
## DATE: Sat Mar 05 19:05:40 CET 2011
##
##########################################################################################
##########################################################################################
## User settings
##########################################################################################
## Rprof(memory.profiling = TRUE)
##----------------------------------------------------------------------------------------
## Initialize R environment
##----------------------------------------------------------------------------------------
rm(list = ls())
gc()
## LOAD DEPENDENCES
require("methods")
require("MASS")
require("Matrix")
require("mvtnorm")
require("flutils")
require("movingknots")
## SAVE OUTPUT PATH
save.output <- "~/running" # "save.output = FALSE" will not save anything
## MCMC TRAJECTORY
track.MCMC = TRUE
##----------------------------------------------------------------------------------------
## Data input and summary
##----------------------------------------------------------------------------------------
## SIMULATE DATA
## DGP (OPTIONAL)
## LOAD THE DATA SOURCE
## The data are formated as
## "X": n-by-m matrix
## "Y": n-by-p matrix
## "X.name" m character
## "Y.name" p character
## load(file.path(system.file(package = "movingknots"),"data", "Rajan.Rdata"))
load("~/code/dgp/data/simulated.monthly.features.Rdata")
load("~/code/dgp/data/simulated.monthly.MASEout.Rdata")
X <- simulated.monthly.features[, c(1:10, 12, 14, 16:20)] # remove "Period" -13
X.name <- colnames(X)
Y <- simulated.monthly.MASEout
Y.name <- paste("MASE", 1:(dim(Y)[2]), sep = "")
## STANDARDIZED THE DATA (OPTIONAL)
data <- StdData(X, method = "norm-0-1")
x <- data[["data"]]
## no. of observations
n <- dim(Y)[1]
## no. of dimensions
p <- dim(Y)[2]
## no. of original covariates
m <- dim(x)[2]
##----------------------------------------------------------------------------------------
## Model configurations
##----------------------------------------------------------------------------------------
Starting.time <- Sys.time()
## SHORT MODEL DESCRIPTION
ModelDescription <- paste("tsfeature_s_moving_2_plus_a_moving_2", "+",
format(Starting.time, "%Y%m%d@%H.%M"), ".", rhex(6), sep = "")
## MODEL NAME
Model_Name <- "linear"
## ARGUMENTS FOR SPLINES
splineArgs <- list(
## the components of the design matrix.
comp = c("intercept", "covariates", "thinplate.s", "thinplate.a"),
## comp = c("intercept", "covariates", "thinplate.a"),
## the dimension of the knots for surface.
thinplate.s.dim = c(4, m),
## no. of knots used in each covariates for the additive part. zero means no knots for
## that covariates
thinplate.a.locate = rep(4, m))
## PARAMETERS UPDATED USING GIBBS
## You have to change this when "splineArgs$comp" has
## changed. Coefficients are updated by directly sampling
Params4Gibbs <- c("knots", "shrinkages", "covariance")
## FIXED PARAMETERS
Params_Fixed <- list(
## which knots from which part of model are not updated.
"knots" = list(thinplate.s = 0, thinplate.a = 0),
"shrinkages" = 1:p, # the shrinkages for covariates not updated
"covariance" = 0, # zero means all are updated
"coefficients" = 0)
## ARGUMENTS FOR PARTITION PARAMETERS (BATCHES UPDATE)
## The split argument is only used when surface and additive subsets are of the
## same length
Params_subsetsArgs <- list(
"knots" = list(thinplate.s = list(N.subsets = 1, partiMethod = "systematic"),
thinplate.a = list(N.subsets = 1, partiMethod = "systematic"), split = FALSE),
"shrinkages" = list(N.subsets = 1, partiMethod = "systematic"),
"covariance" = list(N.subsets = 1, partiMethod = "systematic"),
"coefficients" = list(N.subsets = 1, partiMethod = "systematic"))
##----------------------------------------------------------------------------------------
## Parameters settings
##----------------------------------------------------------------------------------------
## TRANSFORMATION FUNCTION
Params_Transform <- list("knots" = "identity",
"shrinkages" = "log",
"covariance" = "identity",
"coefficients" = "identity")
## HESSIAN METHODS
hessMethods <- list("knots" = "outer",
"shrinkages" = "outer",
"covariance" = NA,
"coefficients" = NA)
## Propose method in Metropolis-Hasting
propMethods <- list("knots" = "KStepNewton",
"shrinkages" = "KStepNewton",
"covariance" = "Inverse-Wishart", # random MH without K-step Newton
"coefficients" = NA)
##----------------------------------------------------------------------------------------
## MCMC configurations
##----------------------------------------------------------------------------------------
## NO. OF ITERATIONS
nIter <- 100
## BURN-IN
burn.in <- 0.0 # [0, 1) If 0: use all MCMC results.
## LPDS SAMPLE SIZE
LPDS.sampleProp <- 0.05 # Sample proportion to the total posterior after burn-in.
## CROSS-VALIDATION
crossValidArgs <- list(N.subsets = 0, # No. of folds. If 0:, no cross-validation.
partiMethod = "systematic", # How to partition the data
full.run = FALSE) # Also include a full run.
## NO. OF FINTE NEWTON MOVE FOR EACH PARAMETERS
nNewtonSteps <- list("knots" = 1,
"shrinkages" = 1,
"covariance" = NA, # random MH
"coefficients" = NA) # integrated out
## THE DF. FOR A MULTIVARIATE T-PROPOSAL IN MH ALGORITHM.
MH.prop.df <- list("knots" = 5,
"shrinkages" = 5,
"covariance" = NA,
"coefficients" = NA)
##----------------------------------------------------------------------------------------
## Set up Priors
##----------------------------------------------------------------------------------------
## TODO: The prior should be set in the transformed scale when the linkages is not
## "identity". Write a general function to handle this.
## Regression
knots.location.gen <- make.knots(x = x, method = "k-means", splineArgs)
X.init <- d.matrix(x, knots = knots.location.gen, splineArgs)
lm.init <- lm(Y~0+X.init)
S0.init <- matrix(var(lm.init$residual), p, p)
q <- dim(X.init)[2]
## P MATRIX TYPE
## P.type <- c("identity", "identity", "identity") # can be "identity" or "X'X"
P.type <- c("identity", "identity", "identity") # can be "identity" or "X'X"
## PRIOR FOR COVARIANCE
covariance.priType <- "Inverse-Wishart"
covariance.df0 <- 10
covariance.S0 <- S0.init # p-by-p, see Mardia p.158
## PRIOR FOR COEFFICIENTS
coefficients.priType <- "mvnorm"
coefficients.mu0 <- matrix(0, q*p, 1) # mean of B|Sigma, assume no covariates in.
## PRIOR FOR KNOTS
knots.priType <- "mvnorm"
knots.mu0 <- knots_list2mat(knots.location.gen) # mean from k-means
knots.Sigma0 <- make.knotsPriVar(x, splineArgs) # the covariance for each knots came from x'x
knots.c <- n # The shrinkage
## PRIOR FOR SHRINKAGES
## how many components does the model have
model.comp.len <- length(splineArgs[["comp"]][ "intercept" != splineArgs[["comp"]] ])
shrinkages.pri.trans <- convert.densParams(mean = n/2, var = (n/2)^2,
linkage = Params_Transform[["shrinkages"]]) # assume
# normal prior with "mean" and "var"
shrinkages.priType <- "mvnorm"
shrinkages.mu0 <- matrix(rep(shrinkages.pri.trans[1], p*model.comp.len)) # The mean of
# shrinkage, "n" is unit information
# prior. (n*(X'X)^(-1))
shrinkages.Sigma0 <- diag(rep(shrinkages.pri.trans[2], p), p*model.comp.len) # The variance
# for the shrinkage parameter.
shrinkages.c <- 1 # The shrinkage
## Organize the arguments
priorArgs <- list(P.type = P.type,
knots.priType = knots.priType,
knots.mu0 = knots.mu0, # prior for knots
knots.Sigma0 = knots.Sigma0,
knots.c = knots.c,
shrinkages.priType = shrinkages.priType,
shrinkages.mu0 = shrinkages.mu0, # prior for shrinkages
shrinkages.Sigma0 = shrinkages.Sigma0,
shrinkages.c = shrinkages.c,
coefficients.priType = coefficients.priType,
coefficients.mu0 = coefficients.mu0, # prior for coefficients
covariance.priType = covariance.priType,
covariance.df0 = covariance.df0, # prior for covariance
covariance.S0 = covariance.S0)
##----------------------------------------------------------------------------------------
## Initial values
##----------------------------------------------------------------------------------------
## TODO: The initial values should be transformed into the new scale according to the
## linkages if it is not "identity"
## INITIAL KNOTS LOCATIONS, "list"
INIT.knots <- knots.location.gen
## INITIAL SHRINKAGE FOR MODEL COVARIANCE "matrix"
INIT.shrinkages <- shrinkages.mu0
## INITIAL COVARIANCE "matrix"
INIT.covariance <- covariance.S0
##########################################################################################
## System settings
##########################################################################################
##----------------------------------------------------------------------------------------
## Initialize the data
##----------------------------------------------------------------------------------------
## Gradient function name
gradhess.fun.name <- tolower(paste(Model_Name, "gradhess", sep = "_"))
## Log posterior function name
logpost.fun.name <- tolower(paste(Model_Name, "logpost", sep = "_"))
##----------------------------------------------------------------------------------------
## Set up cross validation etc
##----------------------------------------------------------------------------------------
## The training($training) and testing($testing) structure.
## If no cross-validation, $training is also $testing.
## If full run is required, the last list in $training and $testing is for a full run.
crossvalid.struc <- set.crossvalid(nObs = n, crossValidArgs = crossValidArgs)
## No. of total runs
nCross <- length(crossvalid.struc$training)
## No. of training obs. in each data subset.
nTraining <- unlist(lapply(crossvalid.struc$training, length))
## Params
Params <- list("knots" = knots_list2mat(INIT.knots),
"shrinkages" = INIT.shrinkages,
"covariance" = vech(INIT.covariance),
"coefficients" = matrix(NA, q, p))
## The parameters subset structures.
Params.sub.struc <- Params.subsets(p, splineArgs, Params_Fixed, Params_subsetsArgs)
##----------------------------------------------------------------------------------------
## Construct the output formats
##----------------------------------------------------------------------------------------
## NOTATIONS TO USE
## The output is alway with "OUT.XXX"
## The last dimension is always for the i:th cross-validation subsets.
## Accept probabilities for MH.
OUT.accept.probs <- mapply(function(x) array(NA, c(length(x), nIter, nCross)),
Params.sub.struc, SIMPLIFY = FALSE)
## Parameters updates in each MH step
INIT.knots.mat <- knots_list2mat(INIT.knots)
OUT.Params <- list("knots" = array(INIT.knots.mat, c(length(INIT.knots.mat), 1, nIter, nCross)),
"shrinkages" = array(INIT.shrinkages, c(p*model.comp.len, 1, nIter, nCross)),
"coefficients" = array(NA, c(q, p, nIter, nCross)),
"covariance" = array(vech(INIT.covariance), c((p+1)*p/2, 1, nIter, nCross)))
##########################################################################################
## Testings
##########################################################################################
## See the "tests" folder and tests at end of each function.
##########################################################################################
## Main algorithm
##########################################################################################
##----------------------------------------------------------------------------------------
## Stabilize the initial values
##----------------------------------------------------------------------------------------
## see "tests/test.init.BFGS.R" file
##----------------------------------------------------------------------------------------
## MovingKnots MCMC
##----------------------------------------------------------------------------------------
OUT.FITTED <- MovingKnots_MCMC(gradhess.fun.name = gradhess.fun.name,
logpost.fun.name = logpost.fun.name,
nNewtonSteps = nNewtonSteps,
nIter = nIter,
Params = Params,
Params4Gibbs = Params4Gibbs,
Params.sub.struc = Params.sub.struc,
hessMethods = hessMethods,
Y = Y,
x0 = x,
splineArgs = splineArgs,
priorArgs = priorArgs,
MH.prop.df = MH.prop.df,
Params_Transform = Params_Transform,
propMethods = propMethods,
crossvalid.struc = crossvalid.struc,
OUT.Params = OUT.Params,
OUT.accept.probs = OUT.accept.probs,
burn.in = burn.in,
LPDS.sampleProp = LPDS.sampleProp,
track.MCMC = track.MCMC)
##----------------------------------------------------------------------------------------
## Save outputs to files
##----------------------------------------------------------------------------------------
save.all(save.output, ModelDescription)
cat(paste("Finished at", Sys.time(),"<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n\n"))
## Rprof(NULL)
## summaryRprof()
##########################################################################################
## THE END
##########################################################################################
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.