#====================================================================
# plural class for a4aFit (used for model averaging)
#====================================================================
#' @rdname a4aFit-class
#' @aliases a4aFits-class
setClass("a4aFits",
contains="FLComps"
)
setValidity("a4aFits",
function(object) {
if(!all(sapply(object, is, 'a4aFit'))) {
"Components must be a4aFit"
} else {
TRUE
}
})
#' @rdname a4aFit-class
#' @aliases a4aFits a4aFits-methods
setGeneric("a4aFits", function(object, ...) standardGeneric("a4aFits"))
#' @rdname a4aFit-class
setMethod("a4aFits", signature(object="list"),
function(object, ...) {
args <- list(...)
# names in args, ...
if("names" %in% names(args)) {
names <- args[['names']]
} else {
# ... or in object,
if(!is.null(names(object))) {
names <- names(object)
# ... or in elements, ...
} else {
names <- unlist(lapply(object, name))
# ... or 1:n
idx <- names == "NA" | names == ""
if(any(idx))
names[idx] <- as.character(length(names))[idx]
}
}
# desc & lock
args <- c(list(Class="a4aFits", .Data=object, names=names),
args[!names(args)%in%'names'])
return(
do.call('new', args)
)
})
#' @rdname a4aFit-class
setMethod("a4aFits", signature(object="a4aFit"), function(object, ...) {
lst <- c(object, list(...))
a4aFits(lst)
})
#' @rdname a4aFit-class
setMethod("a4aFits", signature(object="missing"),
function(...) {
# empty
if(missing(...)){
new("a4aFits")
# or not
} else {
args <- list(...)
object <- args[!names(args)%in%c('names', 'desc', 'lock')]
args <- args[!names(args)%in%names(object)]
do.call('a4aFits', c(list(object=object), args))
}
}
)
#' @title Plot of metrics of multiple fits
#' @name plot metrics of multiple fits
#' @docType methods
#' @rdname plot-mfits
#' @aliases plot,a4aFits, missing-method
#' @description Method to plot fitting statistics of multiple fits, useful to compare fits.
#' @param x an \code{a4aFits} object with multiple fits
#' @param y ignored
#' @param ... additional argument list that might never be used
#' @return a \code{plot} with fitting statistics
#' @examples
#' data(ple4)
#' data(ple4.index)
#' qmods <- list(list(~s(age, k=6)))
#' fmods = list()
#' for(i in 1:6) {
#' fmods[[paste0(i)]] <-
#' as.formula(
#' paste0("~te(age, year, k = c(6,", i+14,"), bs = 'tp') + s(age, k = 6)")
#' )
#' }
#' myFits <-
#' scas(
#' FLStocks(ple4), list(FLIndices(ple4.index)),
#' fmodel = fmods, qmodel=qmods, fit="MP"
#' )
#' plot(myFits)
setMethod("plot", c("a4aFits", "missing"), function(x, y=missing, ...){
args <- list()
par(mar=c(5, 4, 4, 4) + 0.1)
gcv = lapply(x,function(x) fitSumm(x)['gcv',])
bic = lapply(x, function(x) BIC(x))
df <- data.frame(unlist(gcv), unlist(bic))
df$fit <- as.numeric(gsub("fit", "",names(gcv)))
names(df) <- c("GCV","BIC","fit")
df <- df[complete.cases(df),]
plot(df$fit, df$GCV, type = "b", col = "blue", ylab = "GCV", xlab = "fit", main="Analysis of fit metrics")
par(new = TRUE)
plot(df$fit, df$BIC, type = "b", col = "red", axes = FALSE, xlab = "", ylab = "")
axis(4)
mtext("BIC", side=4, line=3)
abline(v=df[min(df$GCV)==df$GCV,]$fit, col = "blue",lty = 2)
abline(v=df[min(df$BIC)==df$BIC,]$fit, col = "red",lty = 2)
legend("topleft", legend = c("GCV", "BIC"), col = c("blue", "red"), lty = 1, bg="white")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.