plotStabilityPaths | R Documentation |
Plot the stability paths of each variable (predictor), showing the selection probability as a function of the regularization step.
plotStabilityPaths(
se,
selProbMin = metadata(se)$stabsel.params.cutoff,
selColor = "cadetblue",
notSelColor = "grey",
selProbCutoffColor = "firebrick",
linewidth = 0.5,
alpha = 1,
ylim = c(0, 1),
labelPaths = FALSE,
labels = NULL,
labelNudgeX = 8,
labelSize = 3
)
se |
The |
selProbMin |
A numerical scalar in [0,1]. Predictors with a selection
probability greater than |
selColor |
Color for the selected predictors which have a selection
probability greater than |
notSelColor |
Color for the rest of the (un-selected) predictors. |
selProbCutoffColor |
Color for the line depicting the selection probability cutoff. |
linewidth |
Line width. |
alpha |
Line transparency of the stability paths. |
ylim |
Limits for y-axis. |
labelPaths |
If |
labels |
If |
labelNudgeX |
If |
labelSize |
If |
a ggplot2
object.
stabsel
## create data set
Y <- rnorm(n = 500, mean = 2, sd = 1)
X <- matrix(data = NA, nrow = length(Y), ncol = 50)
for (i in seq_len(ncol(X))) {
X[ ,i] <- runif(n = 500, min = 0, max = 3)
}
s_cols <- sample(x = seq_len(ncol(X)), size = 10,
replace = FALSE)
for (i in seq_along(s_cols)) {
X[ ,s_cols[i]] <- X[ ,s_cols[i]] + Y
}
## reproducible randLassoStabSel() with 1 core
set.seed(123)
ss <- randLassoStabSel(x = X, y = Y)
plotStabilityPaths(ss)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.