#' Multivariate STOMP algorithm
#'
#' Computes the Matrix Profile and Profile Index for Multivariate Time Series.
#'
#' @details
#' The Matrix Profile, has the potential to revolutionize time series data mining because of its
#' generality, versatility, simplicity and scalability. In particular it has implications for time
#' series motif discovery, time series joins, shapelet discovery (classification), density
#' estimation, semantic segmentation, visualization, rule discovery, clustering etc. The MSTOMP
#' computes the Matrix Profile and Profile Index for Multivariate Time Series that is meaningful for
#' multidimensional MOTIF discovery. It uses the STOMP algorithm that is faster than STAMP but lacks
#' its anytime property.
#'
#' Although this functions handles Multivariate Time Series, it can also be used to handle
#' Univariate Time Series. `verbose` changes how much information is printed by this function; `0`
#' means nothing, `1` means text, `2` adds the progress bar, `3` adds the finish sound.
#'
#' @param data a `matrix` of `numeric`, where each column is a time series. Accepts `vector` (see
#' details), `list` and `data.frame` too.
#' @param window_size an `int` with the size of the sliding window.
#' @param exclusion_zone a `numeric`. Size of the exclusion zone, based on window size (default is
#' `1/2`).
#' @param verbose an `int`. See details. (Default is `2`).
#' @param must_dim an `int` or `vector` of which dimensions to forcibly include (default is `NULL`).
#' @param exc_dim an `int` or `vector` of which dimensions to exclude (default is `NULL`).
#'
#' @return Returns a `MultiMatrixProfile` object, a `list` with the matrix profile `mp`, profile index `pi`
#' left and right matrix profile `lmp`, `rmp` and profile index `lpi`, `rpi`, window size `w`,
#' number of dimensions `n_dim`, exclusion zone `ez`, must dimensions `must` and excluded dimensions `exc`.
#'
#' If the input has only one dimension, returns the same as [stomp()].
#'
#' @export
#'
#' @describeIn mstomp Single thread version.
#'
#' @family matrix profile computations
#'
#' @references * Yeh CM, Kavantzas N, Keogh E. Matrix Profile VI : Meaningful Multidimensional Motif
#' Discovery.
#' @references * Zhu Y, Imamura M, Nikovski D, Keogh E. Matrix Profile VII: Time Series Chains: A
#' New Primitive for Time Series Data Mining. Knowl Inf Syst. 2018 Jun 2;1-27.
#' @references Website: <https://sites.google.com/view/mstamp/>
#' @references Website: <http://www.cs.ucr.edu/~eamonn/MatrixProfile.html>
#'
#' @examples
#' # using all dimensions
#' mp <- mstomp(mp_toy_data$data[1:150, ], 30, verbose = 0)
#' \dontrun{
#' #' # using threads
#' mp <- mstomp_par(mp_toy_data$data[1:150, ], 30, verbose = 0)
#'
#' # force using dimensions 1 and 2
#' mp <- mstomp(mp_toy_data$data[1:200, ], 30, must_dim = c(1, 2))
#' # exclude dimensions 2 and 3
#' mp2 <- mstomp(mp_toy_data$data[1:200, ], 30, exc_dim = c(2, 3))
#' }
#'
mstomp <- function(data, window_size, exclusion_zone = getOption("tsmp.exclusion_zone", 1 / 2),
verbose = getOption("tsmp.verbose", 2),
must_dim = NULL, exc_dim = NULL) {
# get various length
ez <- exclusion_zone # store original
exclusion_zone <- round(window_size * exclusion_zone + vars()$eps)
# transform data list into matrix
if (is.matrix(data) || is.data.frame(data)) {
if (is.data.frame(data)) {
data <- as.matrix(data)
} # just to be uniform
if (ncol(data) > nrow(data)) {
data <- t(data)
}
data_size <- nrow(data)
n_dim <- ncol(data)
} else if (is.list(data)) {
data_size <- length(data[[1]])
n_dim <- length(data)
for (i in 1:n_dim) {
len <- length(data[[i]])
# Fix TS size with NaN
if (len < data_size) {
data[[i]] <- c(data[[i]], rep(NA, data_size - len))
}
}
# transform data into matrix (each column is a TS)
data <- sapply(data, cbind)
} else if (is.vector(data)) {
data_size <- length(data)
n_dim <- 1
# transform data into 1-col matrix
data <- as.matrix(data) # just to be uniform
} else {
stop("Unknown type of data. Must be: matrix, data.frame, vector or list.")
}
matrix_profile_size <- data_size - window_size + 1
# check input
if (window_size > data_size / 2) {
stop("Time series is too short relative to desired window size.")
}
if (window_size < 4) {
stop("`window_size` must be at least 4.")
}
if (any(must_dim > n_dim)) {
stop("`must_dim` must be less then the total dimension.")
}
if (any(exc_dim > n_dim)) {
stop("`exc_dim` must be less then the total dimension.")
}
if (length(intersect(must_dim, exc_dim)) > 0) {
stop("The same dimension is presented in both the exclusion dimension and must have dimension.")
}
# check skip position
n_exc <- length(exc_dim)
n_must <- length(must_dim)
mask_exc <- rep(FALSE, n_dim)
mask_exc[exc_dim] <- TRUE
skip_location <- rep(FALSE, matrix_profile_size)
for (i in 1:matrix_profile_size) {
if (any(is.na(data[i:(i + window_size - 1), !mask_exc])) || any(is.infinite(data[i:(i + window_size - 1), !mask_exc]))) {
skip_location[i] <- TRUE
}
}
data[is.na(data)] <- 0
data[is.infinite(data)] <- 0
if (verbose > 1) {
pb <- progress::progress_bar$new(
format = "mSTOMP [:bar] :percent at :tick_rate it/s, elapsed: :elapsed, eta: :eta",
clear = FALSE, total = matrix_profile_size, width = 80
)
}
if (verbose > 2) {
on.exit(beep(sounds[[1]]), TRUE)
}
# initialization
nn <- vector(mode = "list", length = 3)
data_mean <- matrix(0, matrix_profile_size, n_dim)
data_sd <- matrix(0, matrix_profile_size, n_dim)
first_product <- matrix(0, matrix_profile_size, n_dim)
for (i in 1:n_dim) {
nn[[i]] <- dist_profile(data[, i], data[, i], window_size = window_size)
first_product[, i] <- nn[[i]]$last_product
data_mean[, i] <- nn[[i]]$par$data_mean
data_sd[, i] <- nn[[i]]$par$data_sd
}
tictac <- Sys.time()
# compute the matrix profile
matrix_profile <- matrix(Inf, matrix_profile_size, n_dim)
profile_index <- matrix(-Inf, matrix_profile_size, n_dim)
left_matrix_profile <- matrix(Inf, matrix_profile_size, n_dim)
left_profile_index <- matrix(-Inf, matrix_profile_size, n_dim)
right_matrix_profile <- matrix(Inf, matrix_profile_size, n_dim)
right_profile_index <- matrix(-Inf, matrix_profile_size, n_dim)
distance_profile <- matrix(0, matrix_profile_size, n_dim)
last_product <- matrix(0, matrix_profile_size, n_dim)
drop_value <- matrix(0, 1, n_dim)
for (i in 1:matrix_profile_size) {
# compute the distance profile
if (verbose > 1) {
pb$tick()
}
query_window <- as.matrix(data[i:(i + window_size - 1), ])
if (i == 1) {
for (j in 1:n_dim) {
distance_profile[, j] <- nn[[j]]$distance_profile
last_product[, j] <- nn[[j]]$last_product
}
} else {
rep_drop_value <- kronecker(matrix(1, matrix_profile_size - 1, 1), t(drop_value))
rep_query <- kronecker(matrix(1, matrix_profile_size - 1, 1), t(query_window[window_size, ]))
last_product[2:(data_size - window_size + 1), ] <- last_product[1:(data_size - window_size), ] -
data[1:(data_size - window_size), ] * rep_drop_value +
data[(window_size + 1):data_size, ] * rep_query
last_product[1, ] <- first_product[i, ]
distance_profile <- 2 * (window_size - (last_product - window_size * data_mean * kronecker(matrix(1, matrix_profile_size, 1), t(data_mean[i, ]))) /
(data_sd * kronecker(matrix(1, matrix_profile_size, 1), t(data_sd[i, ]))))
}
drop_value <- query_window[1, ]
# apply exclusion zone
exc_st <- max(1, i - exclusion_zone)
exc_ed <- min(matrix_profile_size, i + exclusion_zone)
distance_profile[exc_st:exc_ed, ] <- Inf
distance_profile[data_sd < vars()$eps] <- Inf
if (skip_location[i] || any(data_sd[i, !mask_exc] < vars()$eps)) {
distance_profile[] <- Inf
}
distance_profile[skip_location, ] <- Inf
# apply dimension "must have" and "exclusion"
distance_profile[, exc_dim] <- Inf
if (n_must > 0) {
mask_must <- rep(FALSE, n_dim)
mask_must[must_dim] <- TRUE
dist_pro_must <- distance_profile[, mask_must]
distance_profile[, mask_must] <- -Inf
}
if (n_dim > 1) {
dist_pro_sort <- t(apply(distance_profile, 1, sort))
} # sort by row, put all -Inf to the first column
else {
dist_pro_sort <- distance_profile
}
if (n_must > 0) {
dist_pro_sort[, 1:n_must] <- dist_pro_must
}
# figure out and store the nearest neighbor
dist_pro_cum <- rep(0, matrix_profile_size)
dist_pro_merg <- rep(0, matrix_profile_size)
for (j in (max(1, n_must):(n_dim - n_exc))) {
dist_pro_cum <- dist_pro_cum + dist_pro_sort[, j]
dist_pro_merg[] <- dist_pro_cum / j
# left matrix_profile
if (i > (exclusion_zone + 1)) {
min_idx <- which.min(dist_pro_merg[1:(i - exclusion_zone)])
min_val <- dist_pro_merg[min_idx]
left_matrix_profile[i, j] <- min_val
left_profile_index[i, j] <- min_idx
}
# right matrix_profile
if (i < (matrix_profile_size - exclusion_zone)) {
min_idx <- which.min(dist_pro_merg[(i + exclusion_zone):matrix_profile_size]) + i + exclusion_zone - 1
min_val <- dist_pro_merg[min_idx]
right_matrix_profile[i, j] <- min_val
right_profile_index[i, j] <- min_idx
}
# normal matrix_profile
min_idx <- which.min(dist_pro_merg)
min_val <- dist_pro_merg[min_idx]
matrix_profile[i, j] <- min_val
profile_index[i, j] <- min_idx
}
}
matrix_profile <- sqrt(matrix_profile)
right_matrix_profile <- sqrt(right_matrix_profile)
left_matrix_profile <- sqrt(left_matrix_profile)
# remove bad k setting in the returned matrix
if (n_must > 1) {
matrix_profile[, 1:(n_must - 1)] <- NA
right_matrix_profile[, 1:(n_must - 1)] <- NA
left_matrix_profile[, 1:(n_must - 1)] <- NA
}
if (n_exc > 0) {
matrix_profile[, (n_dim - n_exc + 1):n_dim] <- NA
right_matrix_profile[, (n_dim - n_exc + 1):n_dim] <- NA
left_matrix_profile[, (n_dim - n_exc + 1):n_dim] <- NA
}
if (n_must > 1) {
profile_index[, 1:(n_must - 1)] <- NA
right_profile_index[, 1:(n_must - 1)] <- NA
left_profile_index[, 1:(n_must - 1)] <- NA
}
if (n_exc > 0) {
profile_index[, (n_dim - n_exc + 1):n_dim] <- NA
right_profile_index[, (n_dim - n_exc + 1):n_dim] <- NA
left_profile_index[, (n_dim - n_exc + 1):n_dim] <- NA
}
tictac <- Sys.time() - tictac
if (verbose > 0) {
message(sprintf("Finished in %.2f %s", tictac, units(tictac)))
}
if (n_dim > 1) {
obj <- list(
mp = matrix_profile, pi = profile_index,
rmp = right_matrix_profile, rpi = right_profile_index,
lmp = left_matrix_profile, lpi = left_profile_index,
w = window_size,
ez = ez,
n_dim = n_dim,
must = must_dim,
exc = exc_dim
)
class(obj) <- "MultiMatrixProfile"
attr(obj, "join") <- FALSE
} else {
obj <- list(
mp = matrix_profile, pi = profile_index,
rmp = right_matrix_profile, rpi = right_profile_index,
lmp = left_matrix_profile, lpi = left_profile_index,
w = window_size,
ez = ez
)
class(obj) <- "MatrixProfile"
attr(obj, "join") <- FALSE
}
return(obj)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.