#' Anytime univariate STAMP algorithm Parallel version
#'
#' @param n_workers an `int`. Number of workers for parallel. (Default is `2`).
#'
#' @export
#'
#' @describeIn stamp Parallel version.
stamp_par <- function(..., window_size, exclusion_zone = getOption("tsmp.exclusion_zone", 1 / 2),
verbose = getOption("tsmp.verbose", 2),
s_size = Inf, n_workers = 2, weight = NULL) {
argv <- list(...)
argc <- length(argv)
data <- argv[[1]]
if (argc > 1 && !is.null(argv[[2]])) {
query <- argv[[2]]
exclusion_zone <- 0 # don't use exclusion zone for joins
join <- TRUE
} else {
query <- data
join <- FALSE
}
# transform data into matrix
if (is.vector(data)) {
data <- as.matrix(data)
}
else if (is.matrix(data)) {
if (ncol(data) > nrow(data)) {
data <- t(data)
}
} else {
stop("Unknown type of data. Must be: a column matrix or a vector.")
}
if (is.vector(query)) {
query <- as.matrix(query)
} else if (is.matrix(query)) {
if (ncol(query) > nrow(query)) {
query <- t(query)
}
} else {
stop("Unknown type of query. Must be: a column matrix or a vector.")
}
ez <- exclusion_zone # store original
exclusion_zone <- round(window_size * exclusion_zone + vars()$eps)
data_size <- nrow(data)
query_size <- nrow(query)
matrix_profile_size <- data_size - window_size + 1
num_queries <- query_size - window_size + 1
if (window_size > ceiling(query_size / 2)) {
stop("Time series is too short relative to desired window size.")
}
if (window_size < 4) {
stop("`window_size` must be at least 4.")
}
# check skip position
skip_location <- rep(FALSE, matrix_profile_size)
for (i in 1:matrix_profile_size) {
if (any(is.na(data[i:(i + window_size - 1)])) || any(is.infinite(data[i:(i + window_size - 1)]))) {
skip_location[i] <- TRUE
}
}
data[is.na(data)] <- 0
data[is.infinite(data)] <- 0
query[is.na(query)] <- 0
query[is.infinite(query)] <- 0
matrix_profile <- matrix(Inf, matrix_profile_size, 1)
profile_index <- matrix(-Inf, matrix_profile_size, 1)
if (join) {
# no RMP and LMP for joins
left_matrix_profile <- right_matrix_profile <- NULL
left_profile_index <- right_profile_index <- NULL
} else {
left_matrix_profile <- right_matrix_profile <- matrix_profile
left_profile_index <- right_profile_index <- profile_index
}
ssize <- min(s_size, num_queries)
order <- sample(1:num_queries, size = ssize)
tictac <- Sys.time()
cores <- min(max(2, n_workers), parallel::detectCores())
if (verbose > 0) {
message("Warming up parallel with ", cores, " cores.")
}
cols <- min(num_queries, 200)
lines <- 0:(ceiling(ssize / cols) - 1)
if (verbose > 1) {
pb <- progress::progress_bar$new(
format = "STAMP [:bar] :percent at :tick_rate it/s, elapsed: :elapsed, eta: :eta",
clear = FALSE, total = num_queries, width = 80
)
}
# SNOW package
if (verbose > 1) {
prog <- function(n) {
if (!pb$finished) {
pb$tick()
}
}
}
else {
prog <- function(n) {
return(invisible(TRUE))
}
}
opts <- list(progress = prog)
cl <- parallel::makeCluster(cores)
doSNOW::registerDoSNOW(cl)
on.exit(parallel::stopCluster(cl))
if (verbose > 2) {
on.exit(beep(sounds[[1]]), TRUE)
}
# anytime must return the result always
on.exit(return({
obj <- list(
mp = matrix_profile, pi = profile_index,
rmp = right_matrix_profile, rpi = right_profile_index,
lmp = left_matrix_profile, lpi = left_profile_index,
w = window_size,
ez = ez
)
class(obj) <- "MatrixProfile"
attr(obj, "join") <- join
obj
}), TRUE)
if (is.null(weight)) {
pre <- dist_profile(data, query, window_size = window_size)
} else {
pre <- dist_profile(data, query, window_size = window_size, method = "weighted", weight = weight)
}
j <- NULL # CRAN NOTE fix
`%dopar%` <- foreach::`%dopar%` # CRAN NOTE fix
for (k in lines) {
batch <- foreach::foreach(
j = 1:cols,
# .verbose = FALSE,
.inorder = FALSE,
.multicombine = TRUE,
.options.snow = opts,
# .errorhandling = 'remove',
.export = c("dist_profile", "vars")
) %dopar% {
res <- NULL
index <- k * cols + j
if (index <= ssize) {
i <- order[index]
if (is.null(weight)) {
nn <- dist_profile(data, query, pre, index = i)
} else {
nn <- dist_profile(data, query, pre, index = i, method = "weighted")
}
distance_profile <- sqrt(nn$distance_profile)
# apply exclusion zone
if (exclusion_zone > 0) {
exc_st <- max(1, i - exclusion_zone)
exc_ed <- min(matrix_profile_size, i + exclusion_zone)
distance_profile[exc_st:exc_ed] <- Inf
}
distance_profile[pre$data_sd < vars()$eps] <- Inf
if (skip_location[i] || any(pre$query_sd[i] < vars()$eps)) {
distance_profile[] <- Inf
}
distance_profile[skip_location] <- Inf
res <- list(dp = distance_profile, i = i)
}
res
}
for (i in seq_len(length(batch))) {
curr <- batch[[i]]$i
if (!is.null(curr)) {
if (!join) {
# no RMP and LMP for joins
# left matrix_profile
ind <- (batch[[i]]$dp[curr:matrix_profile_size] < left_matrix_profile[curr:matrix_profile_size])
ind <- c(rep(FALSE, (curr - 1)), ind) # pad left
left_matrix_profile[ind] <- batch[[i]]$dp[ind]
left_profile_index[which(ind)] <- curr
# right matrix_profile
ind <- (batch[[i]]$dp[1:curr] < right_matrix_profile[1:curr])
ind <- c(ind, rep(FALSE, matrix_profile_size - curr)) # pad right
right_matrix_profile[ind] <- batch[[i]]$dp[ind]
right_profile_index[which(ind)] <- curr
}
# normal matrix_profile
ind <- (batch[[i]]$dp < matrix_profile)
matrix_profile[ind] <- batch[[i]]$dp[ind]
profile_index[which(ind)] <- curr
}
}
}
tictac <- Sys.time() - tictac
if (verbose > 0) {
message(sprintf("Finished in %.2f %s", tictac, units(tictac)))
}
# return() is at on.exit() function
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.