#' Semirobust Covariance Matrix Estimators
#'
#' Semirobust covariance matrix estimators for models of class \code{"prais"}.
#'
#' @param x an object of class \code{"prais"}, usually, the result of a call to \code{\link{prais_winsten}}.
#' @param type a character string specifying the estimation type.
#' @param ... not used.
#'
#' @details \code{vcovHC} is a function for estimating a robust covariance matrix of parameters for
#' the Prais-Winsten estimator. The weighting schemes specified by type are analogous to those in
#' \code{\link[sandwich]{vcovHC}} in package \href{https://cran.r-project.org/package=sandwich}{sandwich}
#' with the caveat that only \code{"const"}, \code{"HC0"} and \code{"HC1"} are available.
#'
#' @return An object of class "matrix" containing the estimate of the asymptotic covariance matrix
#' of coefficients.
#'
#' @seealso \code{\link[sandwich]{vcovHC}}
#' @export
vcovHC.prais <- function(x, type = c("const", "HC1", "HC0"), ...) {
type <- match.arg(type)
coeffs <- x$coefficients
if (length(coeffs) > 0) {
x_names <- names(coeffs)
rho <- x$rho[NROW(x$rho), ]
intercept <- "(Intercept)" %in% names(x$coefficients)
mt <- x$terms
mt_model <- x$model
y_orig <- as.matrix(mt_model[, attributes(mt)$response])
y_name <- names(mt_model)[attributes(mt)$response]
dimnames(y_orig) <- list(NULL, y_name)
x_orig <- stats::model.matrix.default(x$terms, x$model)
mod <- cbind(y_orig, x_orig)
n <- nrow(mod)
panelwise <- FALSE
if (is.null(x$index)) {
panel <- FALSE
groups <- list(1:n)
} else {
index <- x$index
groups_temp <- unique(mt_model[, index[1]])
groups <- c()
for (i in 1:length(groups_temp)){
pos_temp <- which(mt_model[, index[1]] == groups_temp[i])
names(pos_temp) <- NULL
groups <- c(groups, list(pos_temp))
rm(pos_temp)
}
rm(groups_temp)
panel <- TRUE
if (length(rho) > 1) {panelwise <- TRUE}
}
pw_data <- .pw_transform(mod, rho = rho, intercept = intercept, groups = groups)
pw_data <- stats::na.omit(pw_data)
if (intercept) {
p_int <- 1L
sst <- sum((pw_data[, 1] - mean(pw_data[, 1]))^2)
} else {
p_int <- 0L
sst <- sum(pw_data[, 1]^2)
}
rdf <- x$df.residual
x_pw <- as.matrix(pw_data[, x_names])
pw_fit <- x_pw %*% coeffs
res <- c(pw_data[, 1] - pw_fit)
cov.unscaled <- solve(crossprod(x_pw))
n <- nrow(x_pw)
switch(type,
const = {omega <- rep(sum(res^2) / rdf, n)},
HC0 = {omega <- res^2},
HC1 = {omega <- res^2 * n / rdf})
result <- tcrossprod(cov.unscaled, x_pw) %*% diag(omega, n) %*% x_pw %*% cov.unscaled
} else {
result <- matrix(NA, 0, 0)
}
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.