View source: R/plot_variance_explained.R
plot_variance_explained | R Documentation |
precondition: the input dataset$peptides tibble must have a "intensity_all_group" column, e.g. obtained by first calling the filter_dataset() function with parameter all_group=TRUE (when using this function to analysis_quickstart() that is automatically taken care of)
plot_variance_explained(
dataset,
cols_metadata = NULL,
rollup_algorithm = "maxlfq",
quiet = TRUE
)
dataset |
your dataset. Prior to calling the this function, you must have applied "all_group" filtering and normalization using the filter_dataset() function (see example below) |
cols_metadata |
columns from 'dataset@samples“ to be used. Set to NA or NULL to automatically infer (default) |
rollup_algorithm |
algorithm for combining peptides to proteins as used in DEA algorithms that require a priori rollup from peptides to a protein-level abundance matrix before applying statistics (e.g. ebayes, deqms). Refer to |
quiet |
boolean value, passed to variancePartition package |
performs peptide-to-protein rollup
impute missing values using the missForest R package (doi: 10.1093/bioinformatics/btr597)
call the variancePartition R package (Hoffman GE, Schadt EE, 2016, PMID:27884101)
note; this is quite slow even on small datasets
## Not run:
dataset = filter_dataset(
dataset, filter_min_detect = 0, filter_min_quant = 3,
by_group = FALSE, by_contrast = FALSE, all_group = TRUE,
norm_algorithm = c("vwmb", "modebetween_protein")
)
tmp = plot_variance_explained(dataset, cols_metadata = NA)
print(tmp$p_ve_violin)
print(tmp$tbl_ve)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.