loglik_corp3 <- function(phis, gammas, alpha, beta, N, V, K, D){
t <- digamma(gammas) - digamma(rowSums(gammas)) #would be a capital T
N_prime <- array(apply(N, 1, function(n) rep(n, K)), c(V, K, D))
T_prime <- array(apply(t, c(2, 1), function(t) rep(t, V)), c(V, K, D))
beta_prime <- array(rep(t(beta), D), c(V, K, D))
L <- D * (lgamma(K*alpha) - K*lgamma(alpha)) -
sum(lgamma(rowSums(gammas))) +
sum(lgamma(gammas) + (alpha - gammas)*t) +
sum(N_prime * phis * (T_prime + log(beta_prime) - log(phis)))
return(L)
}
#' @describeIn lda_reshaped Alpha is fixed
#' @inheritParams lda_noalpha
#' @param N matrix of word counts
#' @return A list of all parameters
#' @import foreach
#' @import doParallel
#' @importFrom parallel detectCores
#' @export
#' @order 2
lda_reshaped_noalpha <- function(N, K, max_iter=50, thresh=1e-4, seed=NULL, cores=NULL, alpha=NULL){
#define parameters
V <- ncol(N)
D <- nrow(N)
loglik <- rep(NA, max_iter) #actually the lower bound on the log likelihood
conv <- F
if(is.null(alpha)) alpha <- 1/K
if(is.null(cores)) cores <- detectCores()
registerDoParallel(cores)
#initialise variables (phi and gamma are reinitialised each E step)
phis <- array(NA, c(V, K, D))
gammas <- matrix(NA, D, K)
#initialise beta using a random K documents (using a seed if given)
if(!is.null(seed)) set.seed(seed)
beta <- initalise_beta2(N, V, K, D)
for(iter in 1:max_iter){
message("Iteration", iter)
#E-step
res_lists <- foreach (d=1:D) %dopar% {
e_step_d2(gamm=gammas[d,], phi=phis[,,d], alpha, beta, n=N[d,], V, K)
}
#combine results
for(d in 1:D){
phis[,,d] <- res_lists[[d]]$phi
gammas[d,] <- res_lists[[d]]$gamm
}
# M-step
beta <- update_beta2(beta, phis, N, V, K)
#Check for convergence
loglik[iter] <- loglik_corp3(phis, gammas, alpha, beta, N, V, K, D)
if(L_converged(loglik, iter, thresh)){
conv <- T
break
}
}
#retrieve estimates for thetas
thetas <- gammas / rowSums(gammas)
return(list("beta"=beta, "thetas"=thetas,
"phis"=phis, "gammas"=gammas,
"L"=loglik[iter],
"Ls"=loglik[1:iter],
"alpha"=alpha, "K"=K,
"iterations"=iter,
"converged"=conv))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.