library(tidyverse)
library(conflicted)
library(tidymodels)
library(ggrepel)
library(corrplot)
library(dplyr)
library(corrr)
library(themis)
library(rsample)
library(caret)
library(forcats)
library(rcompanion)
library(MASS)
library(pROC)
library(ROCR)
library(data.table)
data_categ_nosev <- read.csv("/Users/gabrielburcea/Rprojects/data/data_lev_categorical_no_sev.csv", header = TRUE, sep = ",")
conflict_prefer("step", "stats")
conflict_prefer("sensitivity", "caret")
### ML for Mixed - categorical and numerica data ####
###########################################################################################
### Transforming variables in factor format ###############################################
#data_categ_nosev$country <- as.factor(data_categ_nosev$country)
data_categ_nosev$chills <- as.factor(data_categ_nosev$chills)
data_categ_nosev$cough <- as.factor(data_categ_nosev$cough)
data_categ_nosev$Gender <- as.factor(data_categ_nosev$Gender)
data_categ_nosev$Covid_tested <- as.factor(data_categ_nosev$Covid_tested)
data_categ_nosev$diarrhoea <- as.factor(data_categ_nosev$diarrhoea)
data_categ_nosev$fatigue <- as.factor(data_categ_nosev$fatigue)
data_categ_nosev$headache <- as.factor(data_categ_nosev$headache)
data_categ_nosev$loss_smell_taste <- as.factor(data_categ_nosev$loss_smell_taste)
data_categ_nosev$muscle_ache <- as.factor(data_categ_nosev$muscle_ache)
data_categ_nosev$nasal_congestion <- as.factor(data_categ_nosev$nasal_congestion)
data_categ_nosev$nausea_vomiting <- as.factor(data_categ_nosev$nausea_vomiting)
data_categ_nosev$self_diagnosis <- as.factor(data_categ_nosev$self_diagnosis)
data_categ_nosev$shortness_breath <- as.factor(data_categ_nosev$shortness_breath)
data_categ_nosev$sore_throat <- as.factor(data_categ_nosev$sore_throat)
data_categ_nosev$sputum <- as.factor(data_categ_nosev$sputum)
data_categ_nosev$temperature <- as.factor(data_categ_nosev$temperature)
data_categ_nosev$health_care_worker <- as.factor(data_categ_nosev$health_care_worker)
data_categ_nosev$care_home_worker <- as.factor(data_categ_nosev$care_home_worker)
### Transforming variables in numerical format #########################################################
data_categ_nosev$asthma <- as.factor(data_categ_nosev$asthma)
data_categ_nosev$diabetes_type_two <- as.factor(data_categ_nosev$diabetes_type_two)
data_categ_nosev$obesity <- as.factor(data_categ_nosev$obesity)
data_categ_nosev$hypertension <- as.factor(data_categ_nosev$hypertension)
data_categ_nosev$heart_disease <- as.factor(data_categ_nosev$heart_disease)
data_categ_nosev$kidney_disease <- as.factor(data_categ_nosev$kidney_disease)
data_categ_nosev$lung_condition <- as.factor(data_categ_nosev$lung_condition)
data_categ_nosev$liver_disease <- as.factor(data_categ_nosev$liver_disease)
data_categ_nosev$diabetes_type_one <- as.factor(data_categ_nosev$diabetes_type_one)
data_categ_nosev$how_unwell <- as.numeric(data_categ_nosev$how_unwell)
data_categ_nosev$number_days_symptoms <- as.numeric(data_categ_nosev$number_days_symptoms)
data_categ_nosev$Age <- as.numeric(data_categ_nosev$Age)
data_categ_nosev$ID <- NULL
data_categ_nosev$Country <- NULL
########## Dividing Data into training and testing #########################################
###Set seed #####
set.seed(22)
##################
split1 <- createDataPartition(data_categ_nosev$Covid_tested, p = .80)[[1]]
training_data <- data_categ_nosev[split1,]
testing_data <- data_categ_nosev[-split1,]
prop.table(table(training_data$Covid_tested))
library(DMwR)
smote_train <- SMOTE(Covid_tested ~., data = training_data, perc.over = 100, perc.under = 200)
table(smote_train$Covid_tested)
smote_train$country <- NULL
preProcValues <- preProcess(smote_train[, -1],
method = c("center", "scale", "YeoJohnson", "nzv"))
transformed <- predict(preProcValues, newdata = training_data)
################################################################################
# Obtain different perfomances measures, two wrapper functions
# For Accuracy, Kappa, the area under the ROC curve,
# sensitivity and specificity
library(caret)
library(pROC)
fiveStats <- function (...)c(twoClassSummary(...),
defaultSummary(...))
# Everything but the area under the ROC curv
fourStats <- function(data, lev=levels(data$obs), model =NULL){
accKapp <- postResample(data[, "pred"], data[, "obs"])
out<- c(accKapp,
sensitivity(data[,"pred"], data[,"obs"], lev[1]),
specificity(data[,"pred"], data[,"obs"], lev[2]))
names(out)[3:4] <- c("Sens", "Spec")
out
}
table_perf = data.frame(model=character(0),
auc=numeric(0),
accuracy=numeric(0),
sensitivity=numeric(0),
specificity=numeric(0),
kappa=numeric(0),
stringsAsFactors = FALSE)
smotest <- list(name = "SMOTE with more neighbors!",
func = function (x, y) {
115
library(DMwR)
dat <- if (is.data.frame(x)) x else as.data.frame(x)
dat$.y <- y
dat <- SMOTE(.y ~ ., data = dat, k = 3, perc.over = 100, perc.under =
200)
list(x = dat[, !grepl(".y", colnames(dat), fixed = TRUE)],
y = dat$.y) },
first = TRUE)
ctrlInside <- trainControl(method = "repeatedcv",
number = 10,
repeats = 5,
summaryFunction = twoClassSummary,
classProbs = TRUE,
savePredictions = TRUE,
search = "grid",
sampling = smotest)
ctrl <- trainControl(method = "repeatedcv",
number = 10,
repeats = 5,
classProbs = TRUE,
summaryFunction = fiveStats,
verboseIter = TRUE,
allowParallel = TRUE)
rf <- caret::train(Covid_tested ~.,
data = training_data,
method = "rf",
trControl = ctrlInside,
# ntree = 1500,
#tuneGrid = data.frame(.mtry = mtryValues),
#tuneLength = 5,
metric = "ROC",
na.action = na.exclude)
rf
# testing_data <- as.data.frame(testing_data)
# testing_data$Covid_tested <- as.factor(testing_data$Covid_tested)
#evalResult <- data.frame(Covid_tested = testing_data$Covid_tested)
testing_data <- testing_data[complete.cases(testing_data),]
evalResult.rf <- predict(rf_tuned, testing_data, type = "prob")
predict_rf <- factor(colnames(evalResult.rf)[max.col(evalResult.rf)])
#predict_rf <- as.factor(ifelse(evalResult.rf >= 0.5, "positive", "negative"))
cm_rf_forest <- confusionMatrix(predict_rf, testing_data$Covid_tested, "positive")
cm_rf_forest
####
mtryValues = c(1,3,5,7,9)
tunegrid <- expand.grid(.mtry = c(1:10))
rf_tuned <- caret::train(Covid_tested ~.,
data = training_data,
method = "rf",
trControl = ctrlInside,
ntree = 1500,
tuneGrid = data.frame(.mtry = mtryValues),
tuneLength = 5,
metric = "ROC",
na.action = na.exclude)
rf_tuned
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.