#' Run NetworKIN
#'
#' This function uses pre-computed NetworKIN predictions to generate predictions
#' on a given set of phosphorylated peptides.
#' @param input_file `<character>` Location of `phospho_clean` file
#' @param output_folder `<character>` Where the output files should be stored
#' @import dplyr
#' @import readr
#' @import readxl
#' @import tidyr
#' @import stringr
#' @importFrom magrittr "%>%"
#' @importFrom rlang .data
#' @export
#'
run_networkin <- function(input_file = 'phospho_clean.csv',
output_folder = 'myexperiment/'){
phospho <- readr::read_csv(paste0(output_folder, input_file), col_names = TRUE) %>%
mutate(MOD_RSD = stringr::str_extract(.data$MOD_RSD, ".+(?=-p)"))
predictions_networkin_nov2020 <- phosphogodb::predictions_networkin_nov2020
predictions <- phospho %>% dplyr::inner_join(predictions_networkin_nov2020, by = c("substrate" = "#Name", "MOD_RSD" = "Position"))
predictions <-predictions %>%
mutate(protein_phosphosite = paste0(.data$substrate, ":", .data$MOD_RSD)) %>%
mutate(MOD_RSD = paste0(.data$MOD_RSD, "-p")) %>%
select(.data$substrate,
.data$MOD_RSD,
"target_name" = .data$`Target description`,
"top_predicted_kinase" = .data$`Kinase/Phosphatase/Phospho-binding domain`,
.data$protein_phosphosite,
.data$Ratio,
.data$Log2,
.data$adj_pvalue,
"networkin_score" = .data$`NetworKIN score`)
write_csv(predictions, paste0(output_folder, 'networkin_output.csv'))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.