score_dist <- function(dist,truth){
return (max(log(sum(round(dist,1) == round(truth,1))/length(dist)),-10))
}
predownload_data <- function(){
data_obj <- list()
data_obj_idx <- 1
for (region in c('al', 'ak', 'az', 'ca', 'co', 'ct','de','fl','ga', 'hi', 'id', 'il','in', 'ia', 'ks', 'ky', 'la', 'me', 'md', 'ma', 'mi', 'mn', 'ms', 'mo', 'mt', 'ne', 'nv', 'nh', 'nj', 'nm', 'ny_minus_jfk', 'nc', 'nd', 'oh', 'ok', 'or','pa', 'ri', 'sc', 'sd', 'tn', 'tx', 'ut', 'vt', 'va', 'wa', 'wv', 'wi', 'wy','as','mp', 'dc', 'gu', 'pr', 'vi', 'ord', 'lax', 'jfk')){
req <- curl_fetch_memory(paste0("https://delphi.midas.cs.cmu.edu/epidata/api.php?source=fluview®ions=",region,"&epiweeks=201240-201920"))
req_json <- jsonlite::prettify(rawToChar(req$content))
data_obj[[data_obj_idx]] <- jsonlite::fromJSON(req_json)$epidata
data_obj_idx <- data_obj_idx +1
}
total_data <- do.call(rbind, data_obj)
saveRDS(total_data,"data.RDS")
}
get_ili_for_epiweek_and_issue <- function(start_epiweek,end_epiweek,region){
total_data <- readRDS("data.RDS")
return (total_data[total_data$region == region & total_data$epiweek <= end_epiweek & total_data$epiweek >= start_epiweek ,])
}
plot_predictive_dist <- function(pred_dist,truth,test_idx,method,previous_point,location){
p <-ggplot(data=data.frame(x = pred_dist),aes(x=x)) + geom_histogram()+geom_vline(xintercept =truth ) +xlim(0,10) + geom_vline(xintercept = previous_point,col='blue')
ggsave(filename = paste0(location,"-",method,"-",test_idx),plot = p,device = "png")
}
plot_data_till_time_t <- function(data){
p <-ggplot(data=data.frame(x = 1:length(data),y=data),aes(x=x,y=y)) + geom_line()
ggsave(filename = paste0("data-",test_idx),plot = p,device = "png")
}
library(quantmod)
library(pander)
library(cdcfluview)
library(sarimaTD)
library(cdcfluutils)
library(ggplot2)
## declare region to be analyzed
region_str <- c("Alabama","Alaska","Arizona","California","Colorado","Connecticut", "Delaware","Georgia","Hawaii","Idaho", "Illinois","Indiana","Iowa","Kansas","Kentucky","Louisiana", "Maine","Maryland","Massachusetts","Michigan","Minnesota","Mississippi","Missouri","Montana", "Nebraska","Nevada","New Hampshire","New Jersey","New Mexico","New York","North Carolina","North Dakota","Ohio","Oklahoma","Oregon","Pennsylvania","Rhode Island","South Carolina","South Dakota","Tennessee","Texas","Utah","Vermont", "Virginia","Washington","West Virginia","Wisconsin","Wyoming","As","mp","District of Columbia", "gu","Puerto Rico","Virgin Islands","ord","lax","New York City")
region_abbrv <- c('al', 'ak', 'az', 'ca', 'co', 'ct','de','ga', 'hi', 'id', 'il','in', 'ia', 'ks', 'ky', 'la', 'me', 'md', 'ma', 'mi', 'mn', 'ms', 'mo', 'mt', 'ne', 'nv', 'nh', 'nj', 'nm', 'ny_minus_jfk', 'nc', 'nd', 'oh', 'ok', 'or','pa', 'ri', 'sc', 'sd', 'tn', 'tx', 'ut', 'vt', 'va', 'wa', 'wv', 'wi', 'wy','as','mp', 'dc', 'gu', 'pr', 'vi', 'ord', 'lax', 'jfk')
kcde_score_df <- matrix(NA,nrow=55*68,ncol=3)
sarima_score_df <- matrix(NA,nrow=55*68,ncol=3)
score_idx <-1
for (location in 1:length(region_str)){
region_str_local <- region_str[location]
region_abbrv_local <- region_abbrv[location]
train_data <- get_ili_for_epiweek_and_issue("201640","201840",region_abbrv_local)
test_data <- get_ili_for_epiweek_and_issue("201840","201920",region_abbrv_local)
## GET SARIMA FIT
sarima_fit_bc_transform <- fit_sarima(
y =train_data$wili,
ts_frequency = 52,
transformation = "box-cox",
seasonal_difference = F)
print (sarima_fit_bc_transform)
test_epiweeks <- c(201740:201752,paste0(2018,"0",1:9),201810:201818)
for (test_idx in 1:(length(test_epiweeks)-1)){
h <- length(test_epiweeks) - test_idx
epiweek_cutoff <- test_epiweeks[test_idx]
truth <- tail(get_ili_for_epiweek_and_issue(test_epiweeks[test_idx + h ],test_epiweeks[test_idx + h],region_abbrv_local)$wili,1)
### GET SARIMA PREDS
sarima_pred_dist<- simulate(
object = sarima_fit_bc_transform,
nsim = 10000,
seed = 1,
newdata = c(train_data$wili,test_data$wili[1:test_idx]),
h = h
)
kcde_pred_dist <- fit_and_predict_jags(data = c(train_data$wili,test_data$wili[1:test_idx]),epiweeks=c(substr(train_data$epiweek,5,7),substr(test_data$epiweek[1:test_idx],5,7)),
params_ar=sarima_fit_bc_transform$arma)
create_submission_file(p_samples = kcde_pred_dist,season = 2018,epiweek = test_idx,regions = region_abbrv_local,method = "kcde")
create_submission_file(p_samples = sarima_pred_dist,season = 2018,epiweek = test_idx,regions = region_abbrv_local,method = "sarima")
}
}
#### plots
library(ggplot2)
library(dplyr)
data_for_plot <- total_score_df[total_score_df$epiweek %in% 4:30,] %>% dplyr::group_by(region) %>% dplyr::summarize(kcde_ls=mean(kcde_ls),sarima_ls=mean(sarima_ls))
p <- ggplot(data_for_plot,aes(x=region,y=sarima_ls,col='sarimaTD')) + geom_point() +
geom_point(aes(x=region,y=kcde_ls,col='sarimaTDS')) + ylim(-10,0)
ggsave(filename = "regional_results",plot = p,device = "png")
create_submission_file <- function(p_samples,season,epiweek,regions,method){
p_samples <- array(pmax(pmin(100,p_samples),0.0),dim=dim(p_samples))
# load required libraries
library(cdcfluutils)
library(predx)
# create variables to pass into predx
analysis_time_season = season
analysis_time_season_week <- 0
weeks_in_first_season_year <- get_num_MMWR_weeks_in_first_season_year(analysis_time_season)
last_analysis_time_season_week = 41
max_prediction_horizon <- 4
first_analysis_time_season_week = 10
# create empy list to hold all region submission files
predx_list <- list()
#create region counter
region_idx <- 1
#iterate through regions to create submission file per region
for (reg in regions){
print (reg)
predx_list[[region_idx]] <- get_predx_forecasts_from_trajectory_samples(trajectory_samples = p_samples,
location = reg, targets = c( paste0(1:4, " wk ahead")),
season = analysis_time_season, analysis_time_season_week = analysis_time_season_week,
first_analysis_time_season_week = first_analysis_time_season_week,
last_analysis_time_season_week = last_analysis_time_season_week,
predx_types = c("Sample", "Bin", "Point"))
region_idx <- region_idx +1
}
#concate to a single object
pred_to_write <- dplyr::rbind_list(predx_list)
# create the submission df
library(dplyr)
submission_df <- predx_to_submission_df(pred_to_write, ew = test_idx, year = season, team = "test")
current_season_identifier <- season
write.csv(submission_df,row.names = F, file =paste0(method,"-","EW",test_idx,"-",regions,"-",current_season_identifier,".csv"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.