#' Proportional Reporting Ratio
#'
#' Test on device-events using the proportional reporting ratio (PRR). From
#' the family of disproportionality analyses (DPA) used to generate signals of
#' disproportionate reporting (SDRs).
#'
#' For parameter \code{ts_event}, in the uncommon case where the
#' device-event count (Cell A) variable is not \code{"nA"}, the name of the
#' variable may be specified here. Note that the remaining 3 cells of the 2x2
#' contingency table (Cells B, C, D) must be the variables \code{"nB"},
#' \code{"nC"}, and \code{"nD"} respectively in \code{df}. A named character
#' vector may be used where the name is the English description of what was
#' analyzed. Note that if the parameter \code{analysis_of} is specified, it will
#' override this name. Example: \code{ts_event=c("Count of Bone Cement
#' Leakages"="event_count")}
#'
#' @param df Required input data frame of class \code{mds_ts} or, for generic
#' usage, any data frame with the following columns:
#' \describe{
#' \item{time}{Unique times of class \code{Date}}
#' \item{nA}{Cell A count (class \code{numeric}) of the 2x2 table:
#' device/event of interest.}
#' \item{nB}{Cell B count (class \code{numeric}) of the 2x2 table:
#' device/non-event of interest.}
#' \item{nC}{Cell C count (class \code{numeric}) of the 2x2 table:
#' non-device/event of interest.}
#' \item{nD}{Cell D count (class \code{numeric}) of the 2x2 table:
#' non-device/non-event of interest.}
#' }
#' @param ts_event Required if \code{df} is of class \code{mds_ts}. Named string
#' indicating the variable corresponding to the event count (cell A in the 2x2
#' contingency table). In most cases, the default is the appropriate setting.
#' See details for alternative options.
#'
#' Default: \code{c("Count"="nA")} corresponding to the event count column in
#' \code{mds_ts} objects. Name is generated from \code{mds_ts} metadata.
#'
#' @param analysis_of Optional string indicating the English description of what
#' was analyzed. If specified, this will override the name of the
#' \code{ts_event} string parameter.
#'
#' Default: \code{NA} indicates no English description for plain \code{df}
#' data frames, or \code{ts_event} English description for \code{df} data frames
#' of class \code{mds_ts}.
#'
#' Example: \code{"Count of bone cement leakages"}
#'
#' @param eval_period Required positive integer indicating the number of unique
#' times counting in reverse chronological order to sum over to create the 2x2
#' contingency table.
#'
#' Default: \code{1} considers only the most recent time in \code{df}.
#'
#' Example: \code{12} sums over the last 12 time periods to create the 2x2
#' contingency table.
#'
#' @param null_ratio Numeric PRR value representing the null hypothesis, used
#' with \code{alpha} to establish the signal status and the p-value.
#'
#' Default: \code{1} indicates a null hypothesis of PRR=1 and tests if the
#' actual PRR is greater than 1.
#'
#' @param alpha Numeric value representing the statistical alpha used to
#' establish the signal status.
#'
#' Default: \code{0.05} corresponds to the standard alpha value of 5\%.
#'
#' @param cont_adj Numeric value 0 or greater representing the continuity
#' adjustment to be added to each cell of the 2x2 contingency table. A value
#' greater than 0 allows for contingency tables with 0 cells to run the
#' algorithm. A typical non-zero value is 0.5.
#'
#' Default: \code{0} adds zero to each cell, thus an unadjusted table. If any
#' cell of the 2x2 is 0, the algorithm will not run.
#'
#' @param ... Further arguments passed onto \code{prr} methods
#'
#' @return A named list of class \code{mdsstat_test} object, as follows:
#' \describe{
#' \item{test_name}{Name of the test run}
#' \item{analysis_of}{English description of what was analyzed}
#' \item{status}{Named boolean of whether the test was run. The name contains
#' the run status.}
#' \item{result}{A standardized list of test run results: \code{statistic}
#' for the test statistic, \code{lcl} and \code{ucl} for the set
#' confidence bounds, \code{p} for the p-value, \code{signal} status, and
#' \code{signal_threshold}.}
#' \item{params}{The test parameters}
#' \item{data}{The data on which the test was run}
#' }
#'
#' @examples
#' # Basic Example
#' data <- data.frame(time=c(1:25),
#' nA=as.integer(stats::rnorm(25, 25, 5)),
#' nB=as.integer(stats::rnorm(25, 50, 5)),
#' nC=as.integer(stats::rnorm(25, 100, 25)),
#' nD=as.integer(stats::rnorm(25, 200, 25)))
#' a1 <- prr(data)
#' # Example using an mds_ts object
#' a2 <- prr(mds_ts[[3]])
#'
#' @references
#' Evans, S. J. W., Waller, P. C., & Davis, S. (2001). Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiology and Drug Safety, 10(6), 483-486. https://doi.org/10.1002/pds.677
#' Böhm R, Klein H.-J. (v2018-10-16). Primer on Disportionality Analysis. OpenVigil http://openvigil.sourcefourge.net/doc/DPA.pdf
#'
#' @export
prr <- function (df, ...) {
UseMethod("prr", df)
}
#' @describeIn prr PRR on mds_ts data
#' @export
prr.mds_ts <- function(
df,
ts_event=c("Count"="nA"),
analysis_of=NA,
...
){
input_param_checker(ts_event, check_names=df, max_length=1)
if (is.null(names(ts_event))) stop("ts_event must be named")
# Set NA counts to 0 for "nA" default
df$nA <- ifelse(is.na(df$nA), 0, df$nA)
# Set analysis_of
if (is.na(analysis_of)){
name <- paste(names(ts_event), "of",
attributes(df)$dpa_detail$nA)
} else name <- analysis_of
if (attributes(df)$dpa){
out <- data.frame(time=df$time,
nA=df[[ts_event]],
nB=df$nB,
nC=df$nC,
nD=df$nD, stringsAsFactors=T)
} else{
stop("Input mds_ts df does not contain data for disproportionality analysis.")
}
prr.default(out, analysis_of=name, ...)
}
#' @describeIn prr PRR on general data
#' @export
prr.default <- function(
df,
analysis_of=NA,
eval_period=1,
null_ratio=1,
alpha=0.05,
cont_adj=0,
...
){
# Contingency table primary variables
c2x2 <- c("nA", "nB", "nC", "nD")
input_param_checker(df, "data.frame")
input_param_checker(c("time", c2x2), check_names=df)
input_param_checker(null_ratio, "numeric")
input_param_checker(alpha, "numeric")
input_param_checker(cont_adj, "numeric")
input_param_checker(eval_period, "numeric", null_ok=F, max_length=1)
if (eval_period %% 1 != 0) stop("eval_period must be an integer")
if (null_ratio < 1) stop("null_ratio must be 1 or greater")
if (alpha <= 0 | alpha >= 1) stop("alpha must be in range (0, 1)")
if (cont_adj < 0) stop("cont_adj must be 0 or greater")
# Order by time
df <- df[order(df$time), ]
# Restrict to eval_period
if (!is.null(eval_period)){
if (eval_period > nrow(df)){
stop("eval_period cannot be greater than df rows")
} else if (eval_period < 1){
stop("eval_period must be greater than 0")
} else{
df <- df[c((nrow(df) - eval_period + 1):nrow(df)), ]
# Sum over eval_period
timeRange <- range(df$time)
df <- cbind(data.frame(time_start=timeRange[1],
time_end=timeRange[2], stringsAsFactors=T),
data.frame(t(colSums(df[, c2x2], na.rm=T)),
stringsAsFactors=T))
# Apply continuity adjustment
df[, c2x2] <- df[, c2x2] + cont_adj
}
}
# Return data
tlen <- nrow(df)
rd <- list(reference_time=timeRange,
data=df)
# Check for non-runnable conditions
hyp <- "Not run"
if(any(df[, c2x2] == 0)){
rr <- NA
rs <- stats::setNames(F, "contingency table has zero counts")
} else{
# If all conditions are met, run PRR test
# Calculate PRR
stat <- (df$nA / (df$nA + df$nB)) / (df$nC / (df$nC + df$nD))
s <- sqrt((1 / df$nA) + (1 / df$nC) -
(1 / (df$nA + df$nB)) - (1 / (df$nC + df$nD)))
# Establish confidence limits
z <- stats::qnorm(1 - (alpha / 2))
cl <- c(stat / exp(z * s), stat * exp(z * s))
p <- min(stats::pnorm((log(null_ratio) - log(stat)) / s) * 2, 1)
# Determine signal & hypothesis
sig <- p <= alpha
hyp <- paste0("Two-sided test at alpha=", alpha, " of PRR > ", null_ratio)
rr <- list(statistic=stats::setNames(stat, "PRR"),
lcl=cl[1],
ucl=cl[2],
p=p,
signal=sig,
signal_threshold=stats::setNames(alpha, "critical p-value"),
sigma=exp(s))
rs <- stats::setNames(T, "Success")
}
# Return test
out <- list(test_name="Proportional Reporting Ratio",
analysis_of=analysis_of,
status=rs,
result=rr,
params=list(test_hyp=hyp,
eval_period=eval_period,
null_ratio=null_ratio,
alpha=alpha,
cont_adj=cont_adj),
data=rd)
class(out) <- append(class(out), "mdsstat_test")
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.