# =============================================================================
#'
#' @title Export continuous data to netcdf
#'
#' @description Exports temperature and relative humidity data from the database
#' into a netcdf file compliant with CF conventions v1.6
#'
#' @param con Database connection object, as returned by dbpf_con()
#'
#' @param location_name integer, the number of unique timesteps for which there is
#' temperature data
#'
#' @param file_name character, path to output netCDF file (*.nc)
#'
#' @param freq The frequency at which to aggregate data from the database
#' one of ('daily', 'hourly')
#'
#' @param verbose whether or not to report on the progress of the download
#' and file creation. Defaults to TRUE.
#'
#' @details Rows are returned from the database using a combination of
#' dbSendQuery() and dbFetch().
#'
#' @export
#'
#' @author Nick Brown <nick.brown@@carleton.ca>
# =============================================================================
dbpf_export_nc_generic <- function(con, location_name, file_name, freq='daily',
verbose = T){
## Get data from DB
period <- switch(tolower(freq), 'daily' = 24, 'hourly' = 1)
# Temperature
if (verbose){print('downloading temperature')}
db_dat_T <- dbpf_observations_agg(con = con,
location_name = location_name,
period = period, fetch = T, verbose = verbose)
db_dat_T <- cbind(db_dat_T, data.frame(measurement = character(nrow(db_dat_T))))
# Humidity
if (verbose){print('downloading humidity')}
db_dat_RH <- dbpf_observations_agg(con = con,
location_name = location_name,
period = period, unit_of_measurement = '%RH',
fetch = T, verbose = verbose)
db_dat_RH <- cbind(db_dat_RH, data.frame(measurement = character(nrow(db_dat_RH))))
# we have to keep dummy data so that arrays are the right shape (for indexing)
if (nrow(db_dat_RH) != 0){db_dat_RH$measurement <- "RH"}
if (nrow(db_dat_T) != 0){db_dat_T$measurement <- "temp"}
db_dat <- rbind(db_dat_T, db_dat_RH)
db_dat <- db_dat[order(db_dat$loc_name),]
#reshape and get values
if (verbose){print("reshaping data")}
db_dat$height <- -(db_dat$height)
db_dat <- db_dat[,c("loc_name", "height", "agg_avg", "time", "measurement")]
# get depth indices
depths <- by(db_dat$height, db_dat$loc_name, unique, simplify=T)
indx <- sapply(depths, length) # how many z levels for each station
depths <- as.data.frame(do.call(rbind,lapply(depths, `length<-`, max(indx))))
vals_depths <- -as.matrix(t(depths))
#convert depth value to level number
Z <- by(db_dat$height, db_dat$loc_name, function(x) as.numeric(as.factor(x))) #
db_dat$height <- as.numeric(unlist(Z))
#reshape data into an n-d array (level, time, station, measurement_type)
m <- reshape2::acast(db_dat,
formula = height ~ time ~ loc_name ~ measurement,
value.var = 'agg_avg',
fun.aggregate = function(x) x[1])
refdate <- as.POSIXct("1970-01-01 00:00:00", fmt="%Y-%m-%D %T", tz='UTC')
vals_time_true <- as.POSIXct(dimnames(m)[[2]], fmt="%Y-%m-%D %T", tz='UTC')
if (tolower(freq) == 'daily'){
vals_time <- vals_time_true - refdate
time_units <- "days since 1970-01-01 00:00:00"
}else if(tolower(freq) == 'hourly'){
vals_time <- as.numeric(vals_time_true) - as.numeric(refdate)
time_units <- "seconds since 1970-01-01 00:00:00"
}
# get generic info about dataset
vals_name <- dimnames(m)[[3]]
n_depth <- dim(m)[1]
n_ts <- dim(m)[2]
n_stations <- dim(m)[3]
# Split data into different variables (air temp, ground temp etc.)
tmp_i <- which(dimnames(m)[[4]]=='temp')
rh_i <- which(dimnames(m)[[4]]=='RH')
vals_g_tmp <- m[,,,tmp_i]
vals_a_tmp <- m[,,,tmp_i]
vals_a_rh <- m[,,,rh_i]
#split temperatures into air and ground files based on depths
if (all(dim(depths)==1)){
# a bit of a workaround here if there is only 1 sensor
surface_cutoff <- array(-as.numeric(depths), dim=c(n_depth, n_ts, n_stations))
}else{
surface_cutoff <- replicate(n_ts, -as.matrix(depths), simplify='array')
surface_cutoff <- aperm(surface_cutoff, c(2, 3, 1)) # rotate array
}
vals_g_tmp[surface_cutoff > 0] <- NA
vals_a_tmp[surface_cutoff <= 0] <- NA
## Get coordinate data
loc <- dbpf_locations(con)
coords <- loc[match(vals_name, loc$name),
c('name','lon', 'lat', 'elevation_in_metres')]
##
if (length(vals_name) != length(location_name)){
nodata <- location_name[! location_name %in% vals_name]
warning(sprintf("The following locations do not have data and are not
included in the output: %s",
paste(nodata, collapse = ',')))
}
## create NA arrays for any missing data
if (0 %in% dim(vals_g_tmp)){vals_g_tmp <- array(NA, dim=c(n_depth, n_ts, n_stations))}
if (0 %in% dim(vals_a_tmp)){vals_a_tmp <- array(NA, dim=c(n_depth, n_ts, n_stations))}
if (0 %in% dim(vals_a_rh)){vals_a_rh <- array(NA, dim=c(n_depth, n_ts, n_stations))}
## Get offset data from stick-up heights
vals_off <- interpolate_sensor_offset(location = vals_name,
t_bnds = vals_time_true,
interpol = 'constant')
vals_off <- vals_off[, c('corrected_utc_time', vals_name)] #reorder cols to match
vals_off <- as.matrix(vals_off[, -1]) # get rid of date column and convert to matrx
## Create .nc file
if (verbose){print("creating netcdf file")}
nc <- createGenericNCDF(file = file_name,
n_timestep = n_ts,
n_stations = n_stations,
n_levels = n_depth,
close_file = F,
time_units = time_units)
## Populate data
ncdf4::ncvar_put(nc, varid='height', vals = vals_depths)
ncdf4::ncvar_put(nc, varid='time', vals = vals_time)
ncdf4::ncvar_put(nc, varid="soil_temperature", vals = vals_g_tmp)
ncdf4::ncvar_put(nc, varid="air_temperature", vals = vals_a_tmp)
ncdf4::ncvar_put(nc, varid="relative_humidity", vals = vals_a_rh)
ncdf4::ncvar_put(nc, varid="station_name", vals = vals_name)
ncdf4::ncvar_put(nc, varid='latitude', vals = coords$lat)
ncdf4::ncvar_put(nc, varid='longitude', vals = coords$lon)
ncdf4::ncvar_put(nc, varid='elevation', vals = coords$elevation_in_metres)
ncdf4::ncvar_put(nc, varid='height_offset', vals = vals_off)
## Close file
ncdf4::nc_close(nc)
}
# =============================================================================
#'
#' @title Create empty netCDF file for one or more thermistor chains
#'
#' @description Creates a netCDF file with specified dimensions. The file has no
#' data within it, but must be added in afterwards. Thermistors should may have
#' different measurement depths but should have the same number of measurement
#' depths (levels)
#'
#' @details The file structure is based on H.5.1. "Multidimensional array of
#' time series profiles representation of time series"
#' (http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#_multidimensional_array_representations_of_time_series_profiles)
#' * Depth values are not time-dependent, therefore the depth levels of a
#' station must not change between time periods
#'
#' @param file character, path to output netCDF file (*.nc)
#'
#' @param n_timestep integer, the number of unique timesteps for which there is
#' temperature data
#'
#' @param n_levels integer, the largest number of depth measurements in any profile
#'
#' @param n_stations integer, how many sites are to be added to the file
#'
#' @param close_file logical, whether or not to close the connection to the file
#' after creation. Leaving the file open allows for the immediate addition of
#' data. Defaults to FALSE.
#' @param time_units netcdf4-style string description of time units
#' @export
#' @author Nick Brown <nick.brown@@carleton.ca>
# =============================================================================
createGenericNCDF <- function(file, n_stations, n_timestep, n_levels,
close_file=FALSE,
time_units="days since 1970-01-01 00:00:00"
){
## Create Dimensions
dummyDimTime <- as.integer(c(1:n_timestep))
dimTime <- ncdf4::ncdim_def("time",
units=time_units, unlim = F, vals = dummyDimTime,
create_dimvar = T)
dummyDimStation <- as.integer(c(1:n_stations))
dimStation <- ncdf4::ncdim_def("station",
unlim = F, vals = dummyDimStation, units = '',
create_dimvar = T)
dummyDimZ <- as.integer(c(1:n_levels))
dimZ <- ncdf4::ncdim_def('z',
unlim = F, vals = dummyDimZ, units = '',
create_dimvar = F)
dimNameStrlen <- ncdf4::ncdim_def("name_strlen",
unlim = F, vals = 1:25, units = '',
create_dimvar = F)
## Create Variables
varLon <- ncdf4::ncvar_def(name = 'longitude', prec='float',
units = "degrees_E",
dim = list(dimStation),
longname = "station longitude (WGS84)")
varLat <- ncdf4::ncvar_def(name = 'latitude', prec='float',
units = "degrees_N",
dim = list(dimStation),
longname = "station latitude (WGS84)")
varElev <- ncdf4::ncvar_def(name= 'elevation', prec='float',
units = 'm', missval = -999,
dim=list(dimStation),
longname = "station surface elevation")
varStnName <- ncdf4::ncvar_def(name = 'station_name', prec='char',
units = '',
dim = list(dimNameStrlen, dimStation), # strlen must be first (opposite of NCDF convention)
longname = "station name")
varHeight <- ncdf4::ncvar_def(name = 'height', prec='float',
units = "m",
dim = list(dimZ, dimStation),
longname = "idealized sensor height relative to ground surface")
varSoilTemp <- ncdf4::ncvar_def(name = 'soil_temperature', prec='float',
units = "degrees_C", missval = -999,
dim = list(dimZ, dimTime, dimStation),
longname = "ground temperature")
varHumid <- ncdf4::ncvar_def(name = 'relative_humidity', prec='float',
units = "percent", missval = -999,
dim = list(dimZ, dimTime, dimStation), #XYZTS converted to STZYX on writing
longname = "relative humidity of the air")
varAirTemp <- ncdf4::ncvar_def(name = 'air_temperature', prec='float',
units = "degrees_C", missval = -999,
dim = list(dimZ, dimTime, dimStation), #XYZTS converted to STZYX on writing
longname = "air temperature")
varOffset <- ncdf4::ncvar_def(name = 'height_offset', prec='float',
units = 'm', missval=-999,
dim = list(dimTime, dimStation),
longname = 'estimated vertical offset of sensors from idealized height')
varcrs <- ncdf4::ncvar_def(name = 'crs', prec='integer',
units = '', longname = "coordinate system",
dim = list())
## Create File
ncnew <- ncdf4::nc_create(file, vars = list(varLon, varLat, varElev, varStnName,
varHeight, varAirTemp, varSoilTemp,
varHumid, varcrs, varOffset))
## Create Attributes
f <- 'extdata'
p <- 'PermafrostDB'
nc_attributes_from_template(ncnew, system.file(f, 'height.csv', package=p))
nc_attributes_from_template(ncnew, system.file(f, 'elevation.csv', package=p))
nc_attributes_from_template(ncnew, system.file(f, 'latitude.csv', package=p))
nc_attributes_from_template(ncnew, system.file(f, 'longitude.csv', package=p))
nc_attributes_from_template(ncnew, system.file(f, 'station_name.csv', package=p))
nc_attributes_from_template(ncnew, system.file(f, 'soil_temperature.csv', package=p))
nc_attributes_from_template(ncnew, system.file(f, 'air_temperature.csv', package=p))
nc_attributes_from_template(ncnew, system.file(f, 'relative_humidity.csv', package=p))
nc_attributes_from_template(ncnew, system.file(f, 'time.csv', package=p))
nc_attributes_from_template(ncnew, system.file(f, 'station.csv', package=p))
nc_attributes_from_template(ncnew, system.file(f, 'crs.csv', package=p))
nc_attributes_from_template(ncnew, system.file(f, '_global_CU_database.csv', package=p))
## Close File or Return
if (close_file){
ncdf4::nc_close(ncnew)
return(file)
}else{
return(ncnew)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.