R/0_QC_Constants.r

Defines functions QC_constants b2b4_ratio c5 c4 d4 min_Ptukey d3 d2

##############################
# Copyright 2017 Kenith Grey #
##############################

# Copyright Notice --------------------------------------------------------
# This file is part of ggQC.
#
# ggQC is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ggQC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ggQC.  If not, see <http://www.gnu.org/licenses/>.

# Formula for constants ---------------------------------------------------
# d2 & d3
#   Barbosa, Emanuel Pimentel, Mario Antonio Gneri and Ariane Meneguetti.
#   “Range Control Charts Revisited: Simpler Tippett-like Formulae, Its Practical Implementation,
#   and the Study of False Alarm.” Communications in Statistics - Simulation and Computation
#   42 (2013): 247-262.
#
# c4 & c5
#   Wheeler et., al Wheeler, DJ, and DS Chambers. Understanding Statistical Process Control,
#   2nd Ed. Knoxville, TN: SPC, 1992. Print.

d2 <- function(n) {
  Ew <- function(x){1 - stats::ptukey(q = x, nmeans = n, df = Inf)}
  stats::integrate(Ew, 0, Inf)$value
}
#d2(2)

d3 <- function(n) {
  Ew <- function(x){1 - stats::ptukey(q = x, nmeans = n, df = Inf)}
  Ew2 <-function(x){x * Ew(x)}
  sqrt(2*stats::integrate(Ew2, 0, Inf)$value-d2(n)^2)
}
#d3(2)
#this function is needed for d4 calcs over n=100
min_Ptukey <- function(par, nmeans){
  abs(.5 - stats::ptukey(q = par, nmeans = nmeans, df = Inf))
}

d4 <- function(n) {
  ###There were some n<100 that this could not process
  ###went to the general function
  #if (n  < 100) {
  #  stats::qtukey(p = .5, nmeans = n, df = Inf)
  #}else{
      stats::optimise(f = min_Ptukey, interval = c(1,20), nmeans=n)$minimum
  #  }
}
#d4(100)

c4 <- function(n) {sqrt(2/(n-1)) * gamma(n/2)/gamma((n-1)/2)}
#c4(2)

c5 <- function(n) {sqrt(1-c4(n)^2)}
#c5(2)


# #b2b4_ratio --------------------------------------------------------------
# The function b2b4 ratio is
# the results of simulated data to determine bias correction
# factors for subgroup medians#
#
#  filelist <- list.files(path = "../Stat/1e4/", pattern = "csv", full.names = T)
#  #
#  loadfiles <- function(FILE){
#    temp <- read.csv(file = FILE, header=T)
#    temp$file <- FILE
#    return(temp)
#  }
#
#  b2b4 <- do.call(rbind, lapply(filelist, loadfiles))
#  ratio <- aggregate(sd_median_per_sd_mean_ratio~n, FUN = mean, data=b2b4)
#  colnames(ratio) <- c("n", "ratio")
#  write.csv(b2b4, file = "b2b4constants.csv", quote = F, row.names = F)
#  b2b4 <- read.csv("b2b4constants.csv")
#  devtools::use_data(b2b4, internal = TRUE, overwrite = TRUE)
#
b2b4_ratio <- function(n){
  if(n <= 200){
    b2b4_out <- b2b4$ratio[b2b4$n == n]
  }else{
    #mean(sd_median_per_sd_mean_ratio[n>200])
    b2b4_out <- 1.25286
  }
  return(b2b4_out)
}


QC_constants <- function(n) {
   round(data.frame(n = n,
  ####R-bar Mean(mean(X))
  d2 = d2(n), #BaseConstants["mean","RANGE_x"], #Root X-bar
  E2 = 3/d2(n), #BaseConstants["mean","RANGE_x"], #3 Sigma non stdentized
  A2 = 3/(d2(n)*sqrt(n)), # (BaseConstants["mean","RANGE_x"]*sqrt(n)), #3 sigma Sutdentized
  d3 = d3(n), #BaseConstants["sd","RANGE_x"], #Root for R-bar
  D3 = ifelse(1 - (3*d3(n)/d2(n)) < 0 , # Minus 3 Sigma for Range X
              0 ,
              1 - (3*d3(n)/d2(n))),
  D4 = 1 + (3*d3(n)/d2(n)), # Plus 3 Sigma for Range X

  #s-bar mean(mean(x))
  c4 = c4(n), # BaseConstants["mean","SD_x"],
  A3 = 3/c4(n)*sqrt(n), #(BaseConstants["mean","SD_x"]*sqrt(n)),
  B3 = ifelse(1 - 3/c4(n)*sqrt(1-c4(n)^2) < 0, # Minus 3 Sigma for Range X
              0,
              1 - 3/c4(n)*sqrt(1-c4(n)^2)),
  B4 = 1 + 3/c4(n)*sqrt(1-c4(n)^2),

  ###Median R Mean(mean(X))
  d4 = d4(n),
  A4 = 3/(d4(n)*sqrt(n)),
  D5 = ifelse((d2(n) - 3*d3(n))/d4(n) < 0, # Minus 3 Sigma for Range X
              0 ,
              (d2(n) - 3*d3(n))/d4(n)),

  D6 =(d2(n) + 3*d3(n))/d4(n), # Plus 3 Sigma for Range X

  ###R-Bar Mean(Median(X))
  A6 = 3/(d2(n)*sqrt(n))*b2b4_ratio(n),
  b2 = d2(n)/b2b4_ratio(n), # used for median(x) Rbar
  ####Median R Mean(Median(X))
  A9 = 3/(d4(n)*sqrt(n))*b2b4_ratio(n),
  b4 = d4(n)/b2b4_ratio(n) # used for median(x) RMedian
  ), digits = 6)
}
ggmtech/ggQC documentation built on Dec. 20, 2021, 10:43 a.m.