compute_aurocs: Efficient computation of AUROCs (vectorized for predictors...

Description Usage Arguments Value

View source: R/aurocs.R

Description

Efficient computation of AUROCs (vectorized for predictors and categories).

Usage

1
compute_aurocs(predictors, label_matrix, compute_tie_correction = FALSE)

Arguments

predictors

Matrix where each column is a predictor and each row is a sample.

label_matrix

One-hot encoded matrix where columns are categories and each row is a sample. The number of rows must be identical to the number of rows in predictors. 1 indicates that the sample on this row belongs to the category on this column.

compute_tie_correction

Boolean. If TRUE, for each AUROC, compute classical tie correction (only useful for p-value computation).

Value

An AUROC matrix of size #predictors x #categories, containing all (predictor, category) combinations.


gillislab/MetaMarkers documentation built on April 24, 2021, 9:25 p.m.