##
##fn_tsbugs1.R: uv models
##fn_tsbugs2.R: general functions
##fn_tsbugs4.R: garch models
##fn_tsbugs4.R: mv models
##
##
##AR Model
##
#y=diff(lh); ar.order=1; sim=TRUE; k=NULL; beg=ar.order+1; mean.centre=FALSE; beg=ar.order+1; ar.prior="dnorm(0,1)"; tol.prior="dgamma(0.000001,0.000001)";
#ar.prior="dnorm(0,1)"; tol.prior="dgamma(0.000001,0.000001)"; var.prior=NULL; sd.prior=NULL; mean.prior=ar.prior
ar.bugs<-function(y, ar.order=1, k=NULL, sim=FALSE,
mean.centre=FALSE, beg=ar.order+1,
mean.prior=ar.prior, ar.prior="dnorm(0,1)", tol.prior="dgamma(0.000001,0.000001)", var.prior=NULL, sd.prior=NULL,
space=FALSE){
y<-c(y)
n<-length(y)
if(!is.null(k)){
y<-c(y,rep(NA,k))
}
k<-length(y)-max(which(!is.na(y)))
if(beg<ar.order)
stop("The value of beg must be at least 1 greater than the number of lags")
if(!is.null(var.prior) | !is.null(sd.prior)){
tol.prior<-NULL
}
if(length(c(tol.prior,var.prior,sd.prior))>1)
stop("Only one of tol.prior, var.prior or sd.prior should be given. Set others to null")
bug<-c("model{","")
#likelihood
lik<-c("#likelihood",
paste0("for(t in ",beg,":",n+k,"){"),
"\ty[t] ~ dnorm(y.mean[t], isigma2)",
"}")
bug<-c(bug, lik)
#ymean
ymean<-c("#mean",
paste0("for(t in ",beg,":",n+k,"){"),
y.mean<-c("\ty.mean[t] <- 0",
"}")
)
if(ar.order==0 & mean.centre==TRUE) ymean[3]<-"\ty.mean[t] <- phi0"
if(ar.order!=0 & mean.centre==FALSE) ymean[3]<-paste0("\ty.mean[t] <- ",paste0("phi",1:ar.order,"*y[t-",1:ar.order,"]",collapse=" + "))
if(ar.order!=0 & mean.centre==TRUE) ymean[3]<-paste0("\ty.mean[t] <- phi0 + ",paste0("phi",1:ar.order,"*(y[t-",1:ar.order,"]-phi0)",collapse=" + "))
bug<-c(bug, ymean, "")
#prior
if(!is.null(tol.prior)){
ar.priors<-c(paste0("phi",0:ar.order," ~ ",ar.prior),
paste0("isigma2 ~ ",tol.prior),
"sigma <- pow(isigma2,-0.5)")
}
if(!is.null(var.prior)){
ar.priors<-c(paste0("phi",0:ar.order," ~ ",ar.prior),
paste0("sigma2 ~ ",var.prior),
"isigma2 <- pow(sigma2,-1)")
}
if(!is.null(sd.prior)){
ar.priors<-c(paste0("phi",0:ar.order," ~ ",ar.prior),
paste0("sigma ~ ",sd.prior),
"isigma2 <- pow(sigma,-2)")
}
ar.priors<-ar.priors[-1]
if(mean.centre==TRUE) ar.priors<-c(paste0("phi0 ~ ",mean.prior),ar.priors)
bug<-c(bug,"#priors",ar.priors,"")
#forecast
forc<-NULL
if(k!=0){
forc<-c("#forecast",
paste("for(t in ",n+1,":",n+k,"){",sep=""),
"\ty.new[t] <- y[t]",
"}",
"")
bug<-c(bug,forc)
}
#simulation
ysim<-NULL
if(sim==TRUE){
ysim<-c("#simulation",
"isigma2.c <- cut(isigma2)",
paste("for(t in ",beg,":",n,"){",sep=""),
"\ty.mean.c[t] <- cut(y.mean[t])",
"\ty.sim[t] ~ dnorm(y.mean.c[t],isigma2.c)",
"}",
"")
bug<-c(bug,ysim)
}
bug<-c(bug,"}","")
#print.tsbugs(list(bug=bug))
if(space==FALSE){
bug<-bug[-nchar(bug)!=0]
if(length(grep("#mean", bug))>0)
bug<-bug[-grep("#mean", bug)]
}
p1<-grep("#likelihood",bug)
p2<-grep("#priors",bug)
if(k!=0 & sim==TRUE){
p3<-grep("#forecast",bug); p4<-grep("#simulation",bug)
}
if(k!=0 & sim==FALSE){
p3<-grep("#forecast",bug); p4<-length(bug)
}
if(k==0 & sim==TRUE){
p3<-grep("#simulation",bug); p4<-p3
}
if(k==0 & sim==FALSE){
p3<-length(bug); p4<-p3
}
p5<-length(bug)
bug<-list(bug=bug,
data=list(y=y),
info=list(n=n,k=k,nh=n+k,
args=mget(names(formals()),sys.frame(sys.nframe()))[-1],
variance="CV",
likelihood=p1:(p2-1),
priors=p2:(p3-1),
forecast=NULL,
simulation=NULL))
if(p3!=p4) bug$info$forecast<-p3:(p4-1)
if(p4!=p5) bug$info$simulation<-p4:(p5-1)
class(bug)<-"tsbugs"
return(bug)
}
##
##SV
##
#y=diff(lh); ar.order=1; sim=TRUE; k=10; beg=2; mean.centre=TRUE; beg=ar.order+1; ar.prior="dnorm(0,1)"; mean.prior="dnorm(0,1)";
#sv.order=1; sv.mean.prior1="dgamma(0.000001,0.000001)"; sv.ar.prior1="dbeta(1,1)"; sv.tol.prior="dgamma(0.01,0.01)"; sv.mean.prior2=NULL; sv.ar.prior2=NULL
sv.bugs<-function(y, ar.order=0, k=NULL, sim=FALSE,
mean.centre=FALSE, beg=ar.order+1,
mean.prior=ar.prior, ar.prior="dnorm(0,1)",
sv.order=1, sv.beg=beg+sv.order,
sv.mean.prior1="dnorm(0,0.001)", sv.mean.prior2=NULL,
sv.ar.prior1="dunif(0,1)", sv.ar.prior2=NULL,
sv.tol.prior="dgamma(0.01,0.01)",
space=FALSE){
y<-c(y)
n<-length(y)
if(!is.null(k)){
y<-c(y,rep(NA,k))
}
k<-length(y)-max(which(!is.na(y)))
if(beg<ar.order)
stop("The value of beg must be at least 1 greater than the number of lags")
if(!is.null(sv.ar.prior2)){
sv.ar.prior1<-NULL
}
if(!is.null(sv.mean.prior2)){
sv.mean.prior1<-NULL
}
if(length(c(sv.mean.prior1,sv.mean.prior2))>1)
stop("Only one of sv.mean.prior1 or sv.mean.prior2 should be given. Set others to null")
if(length(c(sv.ar.prior1,sv.ar.prior2))>1)
stop("Only one of sv.ar.prior1 or sv.ar.prior2 should be given. Set others to null")
bug<-c("model{","")
#likelihood
lik<-c("#likelihood",
paste0("for(t in ",beg,":",n+k,"){"),
"\ty[t] ~ dnorm(y.mean[t], isigma2[t])",
"\tisigma2[t] <- exp(-h[t])",
"\th[t] ~ dnorm(h.mean[t], itau2)",
"}")
bug<-c(bug, lik)
#ymean
ymean<-c("#mean",
paste0("for(t in ",beg,":",n+k,"){"),
y.mean<-c("\ty.mean[t] <- 0",
"}")
)
if(ar.order==0 & mean.centre==TRUE) ymean[3]<-"\ty.mean[t] <- phi0"
if(ar.order!=0 & mean.centre==FALSE) ymean[3]<-paste0("\ty.mean[t] <- ",paste0("phi",1:ar.order,"*y[t-",1:ar.order,"]",collapse=" + "))
if(ar.order!=0 & mean.centre==TRUE) ymean[3]<-paste0("\ty.mean[t] <- phi0 + ",paste0("phi",1:ar.order,"*(y[t-",1:ar.order,"]-phi0)",collapse=" + "))
bug<-c(bug, ymean)
#hmean
hmean<-c("#volatility",
paste0("for(t in ",beg,":",sv.beg-1,"){"),
"\th.mean[t] <- psi0",
"}",
paste0("for(t in ",sv.beg,":",n+k,"){"),
paste0("\th.mean[t] <- psi0 + ",paste0("psi",1:sv.order,"*(h[t-",1:sv.order,"]-psi0)",collapse=" + ")),
"}",
"")
bug<-c(bug, hmean)
#priors
ar.priors<-paste0("phi",0:ar.order," ~ ",ar.prior)
ar.priors<-ar.priors[-1]
if(mean.centre==TRUE) ar.priors<-c(paste0("phi0 ~ ",mean.prior),ar.priors)
if(!is.null(sv.mean.prior2)){
sv.priors<-c(paste0("psi0.star ~ ",sv.mean.prior2),
"psi0 <- -log(psi0.star)")
}
if(!is.null(sv.mean.prior1)){
sv.priors<-paste0("psi0 ~ ",sv.mean.prior1)
}
if(!is.null(sv.ar.prior2)){
sv.priors<-c(sv.priors,
paste0("psi",1:sv.order," ~ ",sv.ar.prior2))
}
if(!is.null(sv.ar.prior1)){
sv.priors<-c(sv.priors,
paste0("psi",1:sv.order,".star ~ ",sv.ar.prior1),
paste0("psi",1:sv.order," <- 2*psi",1:sv.order,".star-1"))
}
sv.priors<-c(sv.priors,
paste0("itau2 ~ ",sv.tol.prior),
"tau <- pow(itau2,-0.5)")
bug<-c(bug,"#priors",ar.priors,sv.priors,"")
#forecast
forc<-NULL
if(k!=0){
forc<-c("#forecast",
paste("for(t in ",n+1,":",n+k,"){",sep=""),
"\ty.new[t] <- y[t]",
"}",
"")
bug<-c(bug,forc)
}
#simulation
if(sim==TRUE){
ysim<-c("#simulation",
paste("for(t in ",beg,":",n,"){",sep=""),
"\ty.mean.c[t] <- cut(y.mean[t])",
"\tisigma2.c[t] <- cut(isigma2[t])",
"\ty.sim[t] ~ dnorm(y.mean.c[t],isigma2.c[t])",
"}",
"")
bug<-c(bug,ysim)
}
bug<-c(bug,"}","")
if(space==FALSE){
bug<-bug[-nchar(bug)!=0]
if(length(grep("#mean", bug))>0)
bug<-bug[-grep("#mean", bug)]
if(length(grep("#volatility", bug))>0)
bug<-bug[-grep("#volatility", bug)]
}
p1<-grep("#likelihood",bug)
p2<-grep("#prior",bug)
if(k!=0 & sim==TRUE){
p3<-grep("#forecast",bug); p4<-grep("#simulation",bug)
}
if(k!=0 & sim==FALSE){
p3<-grep("#forecast",bug); p4<-length(bug)
}
if(k==0 & sim==TRUE){
p3<-grep("#simulation",bug); p4<-p3
}
if(k==0 & sim==FALSE){
p3<-length(bug); p4<-p3
}
p5<-length(bug)
bug<-list(bug=bug,
data=list(y=y),
info=list(n=n,k=k,nh=n+k,
args=mget(names(formals()),sys.frame(sys.nframe()))[-1],
variance="SV",
likelihood=p1:(p2-1),
priors=p2:(p3-1),
forecast=NULL,
simulation=NULL))
if(p3!=p4) bug$info$forecast<-p3:(p4-1)
if(p4!=p5) bug$info$simulation<-p4:(p5-1)
class(bug)<-"tsbugs"
return(bug)
}
#sv.bugs(y,k=5, ar.order=4,sim=T, sv.order=10, mean.centre=T, beg=10)
##
##RV
##
#y=diff(lh); ar.order=1; sim=TRUE; k=10; beg=2; mean.centre=TRUE; beg=ar.order+1; ar.prior="dnorm(0,1)";
# rv.tol0.prior="dgamma(0.000001,0.000001)"; rv.eps.prior="dbeta(1, 100)"; rv.var.prior="dgamma(0.01,0.01)"
rv.bugs<-function(y, ar.order=0, k=NULL, sim=FALSE,
mean.centre=FALSE, beg=ar.order+1,
mean.prior=ar.prior,
ar.prior="dnorm(0,1)",
rv.tol0.prior="dgamma(0.000001,0.000001)",
rv.eps.prior="dbeta(1, 100)",
rv.ilambda2.prior="dgamma(0.01,0.01)",
space=FALSE){
y<-c(y)
n<-length(y)
if(!is.null(k)){
y<-c(y,rep(NA,k))
}
k<-length(y)-max(which(!is.na(y)))
if(beg<ar.order)
stop("The value of beg must be at least 1 greater than the number of lags")
bug<-c("model{","")
#likelihood
lik<-c("#likelihood",
paste0("for(t in ",beg,":",n+k,"){"),
"\ty[t] ~ dnorm(y.mean[t], isigma2[t])",
"\tisigma2[t] <- exp(-h[t])",
"\th[t] <- 2*lsig[t]",
"}")
bug<-c(bug, lik)
#ymean
ymean<-c("#mean",
paste0("for(t in ",beg,":",n+k,"){"),
y.mean<-c("\ty.mean[t] <- 0",
"}")
)
if(ar.order==0 & mean.centre==TRUE) ymean[3]<-"\ty.mean[t] <- phi0"
if(ar.order!=0 & mean.centre==FALSE) ymean[3]<-paste0("\ty.mean[t] <- ",paste0("phi",1:ar.order,"*y[t-",1:ar.order,"]",collapse=" + "))
if(ar.order!=0 & mean.centre==TRUE) ymean[3]<-paste0("\ty.mean[t] <- phi0 + ",paste0("phi",1:ar.order,"*(y[t-",1:ar.order,"]-phi0)",collapse=" + "))
bug<-c(bug, ymean)
#rv
rv<-c("#variance",
paste0("lsig[",beg,"] <- -0.5*log(isig02)"),
paste0("for(t in ",beg+1,":",n+k,"){"),
"\tlsig[t] <- lsig[t-1]+(delta[t]*beta[t])",
"\tdelta[t] ~ dbern(epsilon)",
"\tbeta[t] ~ dnorm(0,ilambda2)",
"}",
"")
bug<-c(bug, rv)
#priors
ar.priors<-paste0("phi",0:ar.order," ~ ",ar.prior)
ar.priors<-ar.priors[-1]
if(mean.centre==TRUE) ar.priors<-c(paste0("phi0 ~ ",mean.prior),ar.priors)
rv.priors<-c(paste0("isig02 ~ ",rv.tol0.prior),
"sig0 <- pow(isig02,-0.5)",
paste0("epsilon ~ ",rv.eps.prior),
paste0("ilambda2 ~ ",rv.ilambda2.prior),
"lambda <- pow(ilambda2,-0.5)")
bug<-c(bug,"#priors",ar.priors,rv.priors,"")
#forecast
forc<-NULL
if(k!=0){
forc<-c("#forecast",
paste("for(t in ",n+1,":",n+k,"){",sep=""),
"\ty.new[t] <- y[t]",
"}",
"")
bug<-c(bug,forc)
}
#simulation
if(sim==TRUE){
ysim<-c("#simulation",
paste("for(t in ",beg,":",n,"){",sep=""),
"\ty.mean.c[t] <- cut(y.mean[t])",
"\tisigma2.c[t] <- cut(isigma2[t])",
"\ty.sim[t] ~ dnorm(y.mean.c[t],isigma2.c[t])",
"}",
"")
bug<-c(bug,ysim)
}
bug<-c(bug,"}","")
if(space==FALSE){
bug<-bug[-nchar(bug)!=0]
if(length(grep("#mean", bug))>0)
bug<-bug[-grep("#mean", bug)]
if(length(grep("#variance", bug))>0)
bug<-bug[-grep("#variance", bug)]
}
p1<-grep("#likelihood",bug)
p2<-grep("#prior",bug)
if(k!=0 & sim==TRUE){
p3<-grep("#forecast",bug); p4<-grep("#simulation",bug)
}
if(k!=0 & sim==FALSE){
p3<-grep("#forecast",bug); p4<-length(bug)
}
if(k==0 & sim==TRUE){
p3<-grep("#simulation",bug); p4<-p3
}
if(k==0 & sim==FALSE){
p3<-length(bug); p4<-p3
}
p5<-length(bug)
bug<-list(bug=bug,
data=list(y=y),
info=list(n=n,k=k,nh=n+k,
args=mget(names(formals()),sys.frame(sys.nframe()))[-1],
variance="RV",
likelihood=p1:(p2-1),
priors=p2:(p3-1),
forecast=NULL,
simulation=NULL))
if(p3!=p4) bug$info$forecast<-p3:(p4-1)
if(p4!=p5) bug$info$simulation<-p4:(p5-1)
class(bug)<-"tsbugs"
return(bug)
class(bug)<-"tsbugs"
return(bug)
}
##
##random walk (with drift)
##
# rw.bugs<-function(n, k=0, simulations=FALSE, drift=FALSE, beg=1,
# drift.prior="dnorm(0,1)", tol.prior="dgamma(0.000001,0.000001)"){
# bug<-c("model{","")
# #likelihood
# lik<-c("#likelihood",
# paste("for(t in ",beg,":",n+k,"){",sep=""),
# "\ty[t] ~ dnorm(y.mean[t], isigma2)",
# "}",
# paste("for(t in ",beg+1,":",n+k,"){",sep=""))
# bug<-c(bug, lik)
# if(drift==FALSE) y.mean<-c("\ty.mean[t] <- y[t-1]","}")
# if(drift==TRUE) y.mean<-c("\ty.mean[t] <- mu + y[t-1]","}")
# bug<-c(bug, y.mean, "")
# #priors
# rw.priors<-c(paste("isigma2 ~ ",tol.prior,sep=""),
# "sigma <- pow(isigma2,-0.5)")
# if(drift==FALSE) bug<-c(bug,"#priors",rw.priors,"")
# if(drift==TRUE) bug<-c(bug,"#priors",paste("mu ~ ",drift.prior,sep=""),rw.priors,"")
# #forecast
# if(k!=0){
# forc<-c("#forecast",
# paste("for(t in ",n+1,":",n+k,"){",sep=""),
# "\ty.new[t] <- y[t]",
# "}",
# "")
# bug<-c(bug,forc)
# }
# #simulation
# if(simulations==TRUE){
# ysim<-c("#simulation",
# "isigma2.c <- cut(isigma2)",
# paste("for(t in ",beg,":",n,"){",sep=""),
# "\ty.mean.c[t] <- cut(y.mean[t])",
# "\ty.sim[t] ~ dnorm(y.mean.c[t],isigma2.c)",
# "}",
# "")
# bug<-c(bug,ysim)
# }
# bug<-c(bug,"}","")
# class(bug)<-"mbugs"
# bug
# }
# rw.bugs(n=20,k=5, sim=T, drift=T)
##
##MA Model
##
# ma.bugs<-function(y, ma.order=1, n=length(y)-k, k=length(y)-max(which(!is.na(y))), b=min(which(!is.na(y)))-1, simulations=FALSE,
# mean.centre=FALSE, beg=ma.order+1,
# mean.prior=ma.prior, ma.prior="dnorm(0,1)", tol.prior="dgamma(0.000001,0.000001)", var.prior=NULL, sd.prior=NULL){
# bug<-c("model{","")
# #likelihood
# lik<-c("#likelihood",
# paste("for(t in ",max(1,b-beg),":",b+n+k,"){",sep=""),
# "\ty[t] ~ dnorm(y.mean[t], isigma2)",
# "\te[t] ~ y[t] - y.mean[t]",
# "}")
# if(b!=0 & b>beg) lik[2]<-paste("for(t in 1:",b+n+k,"){",sep="")
# bug<-c(bug, lik)
# #latent data mean
# int<-c("#priors for latent data",
# paste("for(t in 1:",max(beg,b),"){",sep=""),
# y.mean<-c("\ty.mean[t] <- 0",
# "}")
# )
# if(mean.centre==TRUE) int[3] <- c("\ty.mean[t] <- phi0")
# if(b!=0 & b>beg) bug<-c(bug, int)
# #ymean
# ymean<-c("#data mean",
# paste("for(t in ",max(beg,b+1),":",b+n+k,"){",sep=""),
# y.mean<-c("\ty.mean[t] <- 0",
# "}")
# )
# if(ar.order==0 & mean.centre==TRUE) ymean[3]<-"\ty.mean[t] <- phi0"
# if(ar.order!=0 & mean.centre==FALSE) ymean[3]<-paste("\ty.mean[t] <- ",paste("phi",1:ar.order,"*y[t-",1:ar.order,"]",sep="",collapse=" + "),sep="")
# if(ar.order!=0 & mean.centre==TRUE) ymean[3]<-paste("\ty.mean[t] <- phi0 + ",paste("phi",1:ar.order,"*(y[t-",1:ar.order,"]-phi0)",sep="",collapse=" + "),sep="")
# bug<-c(bug, ymean, "")
# #priors
# if(!is.null(tol.prior)){
# ar.priors<-c(paste("phi",1:ar.order," ~ ",ar.prior,sep=""),
# paste("isigma2 ~ ",tol.prior,sep=""),
# "sigma <- pow(isigma2,-0.5)")
# }
# if(!is.null(var.prior)){
# ar.priors<-c(paste("phi",1:ar.order," ~ ",ar.prior,sep=""),
# paste("sigma2 ~ ",var.prior,sep=""),
# "isigma2 <- pow(sigma2,-1)")
# }
# if(!is.null(sd.prior)){
# ar.priors<-c(paste("phi",1:ar.order," ~ ",ar.prior,sep=""),
# paste("sigma ~ ",sd.prior,sep=""),
# "isigma2 <- pow(sigma,-2)")
# }
# if(mean.centre==FALSE) bug<-c(bug,"#priors",ar.priors,"")
# if(mean.centre==TRUE) bug<-c(bug,"#priors",paste("phi0 ~ ",mean.prior,sep=""),ar.priors,"")
# #backcast
# if(b!=0 & b>beg){
# back<-c("#backcasts",
# paste("for(t in 1:",b,"){",sep=""),
# "\ty.old[t] <- y[t]",
# "}",
# "")
# bug<-c(bug,back)
# }
# #forecast
# if(k!=0){
# forc<-c("#forecast",
# paste("for(t in ",n+1,":",n+k,"){",sep=""),
# "\ty.new[t] <- y[t]",
# "}",
# "")
# bug<-c(bug,forc)
# }
# #simulation
# if(simulations==TRUE){
# ysim<-c("#simulation",
# "isigma2.c <- cut(isigma2)",
# paste("for(t in ",max(beg,b+1),":",n,"){",sep=""),
# "\ty.mean.c[t] <- cut(y.mean[t])",
# "\ty.sim[t] ~ dnorm(y.mean.c[t],isigma2.c)",
# "}",
# "")
# bug<-c(bug,ysim)
# }
# bug<-c(bug,"}","")
# class(bug)<-"mbugs"
# bug
# }
#
# m1<-ar.bugs(y, ar.order=4,b=10)
# print(m1)
# bug<-m1
# nodes<-function(bug=NULL){
# if(class(bug)!="tsbugs")
# stop("bug must be of class bug (i.e. created using function in ts4BUGS")
# forc<-NULL;back<-NULL
# lik<-bug[(grep("#likelihood",bug)+2):(grep("^$",bug)[grep("^$",bug)>grep("#likelihood",bug)][1]-2)]
# prior<-bug[(grep("#priors",bug)+1):(grep("^$",bug)[grep("^$",bug)>grep("#priors",bug)][1]-1)]
# if(length(grep("#backcasts",bug))>0)
# back<-bug[(grep("#backcasts",bug)+2):(grep("^$",bug)[grep("^$",bug)>grep("#backcasts",bug)][1]-2)]
# if(length(grep("#forcasts",bug,value=0))>0)
# forc<-bug[(grep("#forecast",bug)+2):(grep("^$",bug)[grep("^$",bug)>grep("#forecast",bug)][1]-2)]
#
# nds<-ar.priors
#
# if(!is.null(forc))
# forc<-clean(forc)
# if(!is.null(back))
# back<-clean(back)
#
# list(prior=clean(prior),forc=forc,back=back,lik=clean(lik))
# }
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.