#' fit_de
#'
#' runs optimization using RcppDE package (Rcpp version of DEoptim)
#'
#' @param objective function; the objective function to minimize
#' @param start numeric vector; starting parameters
#' @param lower numeric vector; lower bounds on parameters
#' @param upper numeric vector; upper bounds on parameters
#' @param hessian logical; if TRUE, hessian is calculated at solution. Default = FALSE
#' @param sigma numeric vector; standard deviation to create random initial population
#' @param n_pop numeric vector; size of population
#' @param opt_args list; list of arguments passed to DEoptim, see RcppDE::DEoptim for details
#' @param obj_args list; list of arguments to pass on to objective function
#' @param ... further arguments passed to objective
#'
#' @export
fit_de <- function(objective,
start = NULL,
lower = NULL,
upper = NULL,
hessian = FALSE,
sigma = 0.1,
n_pop = 50L,
opt_args = list(),
obj_args = list(),
...) {
if (is.null(lower) | is.null(upper)) {
stop("Bounds must be specified for DEoptim/RcppDE")
}
pass_through <- list(...)
if ("control" %in% names(pass_through)) {
if (!("control" %in% names(opt_args))) {
opt_args$control <- pass_through$control
} else {
warning("control specified in opt_args and as a pass through argument -- ignoring the pass through control.")
}
pass_through$control <- NULL
}
if (!is.null(start)) {
if ("control" %in% names(opt_args)) {
if (!("initialpop" %in% names(opt_args$control))) {
n_pop <- ifelse("NP" %in% names(opt_args$control), opt_args$control$NP, n_pop)
opt_args$control$NP <- n_pop
opt_args$control$initialpop <- sapply(start, function(x) rnorm(n_pop, x, ifelse(x == 0, sigma, sigma * abs(x))))
}
} else {
opt_args$control <- list()
opt_args$control$NP <- n_pop
opt_args$control$initialpop <- sapply(start, function(x) rnorm(n_pop, x, ifelse(x == 0, sigma, sigma * abs(x))))
}
}
fit <- do.call(RcppDE::DEoptim, c(
objective,
list(lower = lower),
list(upper = upper),
opt_args,
obj_args,
pass_through
))
fit_pars <- fit$optim$bestmem
names(fit_pars) <- names(start)
fit_val <- fit$optim$bestval
if (hessian) {
fit_hess <- numDeriv::hessian(objective, fit_pars, ...)
fit_conv <- matrixcalc::is.positive.definite(fit_hess)
} else {
fit_hess <- NA
fit_conv <- NA
}
fit_code <- NA
res <- list(
pars = fit_pars,
value = fit_val,
hess = fit_hess,
convergence = fit_conv,
code = fit_code
)
return(list(fit = fit, res = res))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.