testthat::context("Testing metrics - Proportion of variance explained")
testthat::test_that("Testing metric properties", {
constant <- rep(10, 10)
v1 <- rnorm(n = 10, mean = 10, sd = 1)
v2 <- rnorm(n = 10, mean = 10, sd = 1)
weight1 <- rep(1, 10)
weight2 <- pmax(0, rnorm(n = 10, mean = 10, sd = 1))
# Check metric is self is 0
testthat::expect_true(is.na(metric_pove(constant, constant, weight1)), label = "metric with self is 0") # No variance in target
testthat::expect_equal(metric_pove(v1, v1, weight2) , 1, label = "Check all variance explained") # All variance explained
testthat::expect_equal(metric_pove(v1, constant, weight2) , 0, label = "Check no variance explained") # None variance explained
# Check weights matter
testthat::expect_false(isTRUE(all.equal(metric_pove(v2, v1, weight1) ,metric_pove(v2, v1, weight2))), label = "weight matters")
# Check rebasing doesn't matters
testthat::expect_equal(metric_pove(actual=v1, predicted=v2, weight=weight1), metric_pove(actual=v1, predicted=v2+10, weight=weight1))
})
testthat::test_that("Test errors when input is invalid - lenghts",{
testthat::expect_error(metric_pove(1:10, 1:9))
testthat::expect_error(metric_pove(1:10, 1:10, 1:9))
})
testthat::test_that("Test errors when input is invalid - actuals",{
testthat::expect_error(metric_pove(actual=NA, predicted=c(1, 2)))
testthat::expect_error(metric_pove(actual=NULL, predicted=c(1, 2)))
testthat::expect_error(metric_pove(actual=c("a", "b"), predicted=c(1, 2)))
})
testthat::test_that("Test errors when input is invalid - predicted",{
testthat::expect_error(metric_pove(actual=c(1, 2), predicted=NA))
testthat::expect_error(metric_pove(actual=c(1, 2), predicted=NULL))
testthat::expect_error(metric_pove(actual=c(1, 2), predicted=c("a", "b")))
})
testthat::test_that("Test errors when input is invalid - weight",{
testthat::expect_error(metric_pove(actual=c(1, 2), predicted=c(1, 2), weight=NA))
testthat::expect_error(metric_pove(actual=c(1, 2), predicted=c(1, 2), weight=c("a", "b")))
testthat::expect_error(metric_pove(actual=c(1, 2), predicted=c(1, 2), weight=c(-0.1, 1)))
testthat::expect_error(metric_pove(actual=c(1, 2), predicted=c(1, 2), weight=c(0, 0)))
})
testthat::test_that("Test errors when input is invalid - Other",{
# na.rm and rebase must be logical
testthat::expect_error(metric_pove(actual=c(1, 2), predicted=c(1, 2), weight=c(1, 1), na.rm="True"))
testthat::expect_error(metric_pove(actual=c(1, 2), predicted=c(1, 2), weight=c(1, 1), rebase="True"))
# NA inputs
testthat::expect_true(is.na(metric_pove(actual=c(1, 2, NA), predicted=c(1, 2, 3))))
testthat::expect_true(!is.na(metric_pove(actual=c(1 ,2, NA), predicted=c(1, 2, 3), na.rm=TRUE)))
testthat::expect_equal(metric_pove(actual=c(1, 2, NA), predicted=c(1, 2, NA), weight=c(1, 2, NA), na.rm=TRUE),
metric_pove(actual=c(1, 2), predicted=c(1, 2), weight=c(1, 2), na.rm=TRUE),
label = "Check NAs removed correctly")
})
testthat::test_that("Numeric example",{
actual <- seq(2, 20, 2)
predicted <- seq(1, 10, 1)
weight1 <- rep(1, 10)
weight2 <- c(seq(1, 5, 1), seq(5, 1, -1))
weight3 <- pmax(0, rnorm(n = 10, mean = 10, sd = 1))
testthat::expect_equal(metric_pove(actual, predicted), 1- (var(actual-predicted)/var(actual)))
testthat::expect_equal(metric_pove(actual, predicted, weight1), 1- (var(actual-predicted)/var(actual)))
testthat::expect_equal(metric_pove(actual, predicted, weight2), 1- (var(actual-predicted)/var(actual)))
testthat::expect_equal(metric_pove(actual, predicted, weight3), 1- (var(actual-predicted)/var(actual))) # Weight cancels out
set.seed(666)
predicted <- rnorm(10000, mean=0, sd=10)
actual <- predicted + rnorm(10000, mean=0, sd=1)
testthat::expect_equal(metric_pove(actual, predicted), 0.99, tolerance=0.001)
# https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
testthat::expect_equal(metric_pove(c(1, 2, 3), c(0.4, 1.5, 3.7)) ,0.4766667, tolerance = .00001, label = "metric with self is 1")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.