Description Usage Arguments Value Examples
A version of the wald function that produces a data frame directly, analogously to as.data.frame(wald(...))
| 1 2 3 | 
| fit | a model for which a  | 
| Llist | a hypothesis matrix or a pattern to be matched or a list of these | 
| clevel | level for confidence intervals | 
| data | data frame used as 'data' attribute fot list elements returned only if
the corresonding element of  | 
| debug | (default FALSE) produce verbose information | 
| full | if TRUE, the hypothesis matrix is the model matrix for
 | 
| fixed | if  | 
| invert | if  | 
| method | 'svd' (current default) or 'qr' is the method used to find the full rank version of the hypothesis matrix. 'svd' has correctly identified the rank of a large hypothesis matrix where 'qr' has failed. | 
| se | a vector with the multiples of standard error used to generate lower and upper limits. 'names(se)' is appended to 'L' and 'U' to label the variables. | 
| which | selects elements of 'obj' to turn to a data.frame. | 
A data frame with estimated coefficient, standard error, and, optionally, upper and lower limits and
the variables included the 'data' element of 'obj' if present.
If length(which) > 1, the returned object is a list of data frames.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | data(hs)
library( nlme )
###
### Using walddf to create and plot a data frame with predicted values
###
## Not run: 
  fit <- lme(mathach ~ (ses+I(ses^2)) * Sex * Sector, hs, random = ~ 1|school)
  summary(fit)
  pred <- expand.grid( ses = seq(-2,2,.1), Sex = levels(hs$Sex), Sector = levels(hs$Sector))
  head(pred)
  w <- walddf(fit, getX(fit,data=pred)) # attaches data to wald.object so it can included in data frame
  head(w)
  library(latticeExtra)
  xyplot(coef ~ ses | Sector, w, groups = Sex,
     auto.key = T, type = 'l',
     fit = w$coef,
     upper = w$L,
     lower = w$U,
     xlim = c(0,2),
     subscript = T) +
     glayer( gpanel.fit(...))
  wald(fit, 'ses')
  wald( fit, 'Sex')  # sig. overall effect of Sex
  wald( fit, ':Sex') # but no evidence of interaction with ses
  wald( fit, '\\^2') # nor of curvature
  # conditional effect of ses
  head(getX(fit))
  ###
  ###  Effect of ses: Differentiating with respect to ses
  ###
  L <- Lfx(fit, list(
         0,
         1,
         2 * ses,
         0 * M(Sex),
         0 * M(Sector),
         1 * M(Sex),
         2 * ses * M(Sex),
         1 * M(Sector),
         2 * ses * M(Sector),
         0 * M(Sex) * M(Sector),
         1 * M(Sex) * M(Sector),
         2 * ses * M(Sex) * M(Sector)),
         pred)
  head(wald(fit, L), 20)
  w <- walddf(fit, L)
  xyplot(coef ~ ses | Sector, w, groups = Sex,
     auto.key = list(columns = 2, lines = T),
     type = 'l',
     fit = w$coef,
     upper = w$L,
     lower = w$U,
     xlim = c(0,2),
     ylab = 'estimate change in mathach per unit increase in ses',
     subscripts = T) +
     glayer( gpanel.fit(...)) +
     layer(panel.abline(a=0,b=0,lwd = 1, color ='black'))
  ###
  ###  Difference in effect of ses between Sectors
  ###
  pred.d <- expand.grid( ses = seq(-2,2,.1), Sex = levels(hs$Sex), Sector = levels(hs$Sector), Sector0 = levels(hs$Sector))
  pred.d <- subset(pred.d, Sector > Sector0)
  head(pred.d)
  L <- Lfx(fit, list(
         0,
         0,
         0 * ses,
         0 * M(Sex),
         0 * M(Sector),
         0 * M(Sex),
         0 * ses * M(Sex),
         1 * M(Sector) - M(Sector0),
         2 * ses * (M(Sector) - M(Sector0)),
         0 * M(Sex) * M(Sector),
         1 * M(Sex) * (M(Sector) - M(Sector0)),
         2 * ses * M(Sex) * (M(Sector) - M(Sector0))),
         pred.d)
  w <- walddf(fit, L)
  w
  w <- sortdf(w, ~ Sex/ses)
  xyplot(coef  ~ ses | Sex, w,
     type = 'l',
     auto.key = T,
     fit = w$coef,
     lower = w$L2,
     upper = w$U2,
     xlim = c(0,2),
     ylab = 'effect of ses (Public minus Catholic)',
     subscripts = T) +
     layer(gpanel.fit(...)) +
     layer(panel.abline(a=0,b=0,lwd = 1, color ='black'))
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.