tests/testthat/test_wasserstein_sc.r

library("testthat")
library("waddR")
library("SingleCellExperiment")

ts.names <- c(  "d.wass", "d.wass^2", "d.comp^2", "d.comp", "location",
                "size", "shape", "rho", "p.nonzero", "p.ad.gpd", "N.exc",
                "perc.loc", "perc.size", "perc.shape", "decomp.error",
                "p.zero", "p.combined", "p.adj.nonzero","p.adj.zero",
                "p.adj.combined")

os.names <-  c( "d.wass", "d.wass^2", "d.comp^2", "d.comp", "location",
                "size", "shape", "rho", "pval", "p.ad.gpd", "N.exc",
                "perc.loc", "perc.size", "perc.shape", "decomp.error",
                "pval.adj")

# input data: x, y represent the expression levels for 16 individuals in two
# conditions of one gene
x <- c( 0.0000000, 1.3389541, 0.9190596, 1.5532290, 0.0000000, 1.1014202,
        1.1996965, 1.6332709, 1.0306684, 0.8707476, 1.8230579, 0.0000000,
        1.7195922, 1.1879964, 1.2522275, 0.9516880, 1.0937032, 0.0000000,
        1.3789891, 1.6415560, 0.9871225, 0.0000000, 0.0000000, 0.0000000,
        1.2619454, 1.9289606, 1.7133513, 0.6006942, 0.0000000, 0.7728401,
        0.0000000, 1.2871939, 1.1820060, 1.2520491, 1.6542059, 1.7451944,
        1.3761065, 1.7967770, 0.0000000, 1.1881549, 0.0000000, 0.0000000,
        0.0000000, 2.5839898, 1.0142013, 0.0000000, 0.0000000, 0.0000000,
        1.0225624, 1.3279117, 2.0216712, 1.4012923, 1.7473436, 2.1056459,
        1.5037761, 0.7913705, 1.7510320, 1.0444939, 1.0175730, 1.4748563,
        1.8437568, 1.0464078, 1.6420597, 0.0000000, 1.2362845, 1.3117466,
        1.6209499, 2.8094403)

y <- c( 0.0000000, 2.0119764, 0.0000000, 1.9831597, 2.2152026, 0.0000000,
        0.0000000, 0.0000000, 1.1296844, 1.8360126, 0.0000000, 1.4104730,
        0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000,
        1.1391284, 0.0000000, 2.1396251, 1.2516926, 0.0000000, 2.2685640,
        1.4992348, 0.0000000, 1.4731691, 0.0000000, 0.0000000, 1.0289898,
        2.3849062, 0.0000000, 0.9660725, 2.2188470, 1.2731303, 2.3051090,
        1.4992348, 0.0000000, 1.4731691, 0.0000000, 1.1537754, 2.0288085,
        2.1383034, 0.0000000, 1.5264164, 0.0000000 )

z <- rep(0, 40)
z2 <- rep(0,34)

# matrix input
dat <- matrix(c(x, y), nrow=1)
dat2 <- matrix(c(x, z), nrow=1)
dat3 <- matrix(c(z, z2), nrow=1)
condition1 <- c(rep(0, length(x)), rep(1, length(y)))
condition2 <- c(rep(0, length(x)), rep(1, length(z)))
condition3 <- c(rep(0, length(z)), rep(1, length(z2)))

# SingleCellExperiment input
sce.a <- SingleCellExperiment(assays=list(counts=matrix(x, nrow=1)))
sce.b <- SingleCellExperiment(assays=list(counts=matrix(y, nrow=1)))
sce.a2 <- SingleCellExperiment(assays=list(counts=matrix(z, nrow=1)))
sce.b2 <- SingleCellExperiment(assays=list(counts=matrix(z2, nrow=1)))

test_that("Correctness of wasserstein single cell output", {
    
    # these are the fields of the two stage output that don't depend on random
    # sampling (during permutation procedure), but purely on the input
    ts.stable.fields <- c(1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19)
    
    # these fields of the two stage output involve random sampling and might
    # change slightly between runs
    ts.volatile.fields <- c(9, 10, 17, 18, 20)
    
    # these are the fields of the one stage output that depend on a random
    # sampling (during permutation procedure), but purely on the input
    os.stable.fields <- c(1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15)

    # these fields of the two stage output involve random sampling and might
    # change slightly between runs
    os.volatile.fields <- c(9, 16)

    #########################################################################
    #           Test with two expressed genes in two conditions             #
    #########################################################################

    # TWO STAGE TEST
    res <- wasserstein.sc(dat, condition1)
    res.dup <- wasserstein.sc(sce.a, sce.b)

    # reference results
    res.values <- matrix(c(0.3237935, 0.1048422, 0.1060877, 0.3257111,
                           0.07527902, 0.0007892882, 0.0300194, 0.9262569,
                           0.01, NA, NA, 70.96, 0.74, 28.3,
                           0.01187943, 0.9434837, 0.05, 0.01,
                           0.9434837, 0.05), nrow=1)
    colnames(res.values) <- ts.names

    # compare
    expect_equal(res.dup[ts.stable.fields],
                 res.values[ts.stable.fields],
                 tolerance=0.00001)
    expect_equal(res.dup[ts.volatile.fields],
                 res.values[ts.volatile.fields],
                 tolerance=0.1)
    expect_equal(res[ts.stable.fields],
                 res.values[ts.stable.fields],
                 tolerance=0.00001)
    expect_equal(res[ts.volatile.fields],
                 res.values[ts.volatile.fields],
                 tolerance=0.1)

    # ONE STAGE TEST
    res.os1 <- wasserstein.sc(dat, condition1, "OS")
    res.os.dup1 <- wasserstein.sc(sce.a, sce.b, "OS")

    # reference results
    res.os.values1 <- matrix(c(0.4926601, 0.242714, 0.2474003, 0.4973935,
                               0.03169485, 0.03660025, 0.1791052, 0.8637736,
                               0.09090909, NA, NA, 12.81, 14.79, 72.39,
                               0.01930829, 0.09090909), nrow=1)
    colnames(res.os.values1) <- os.names

    expect_equal(res.os1[os.stable.fields],
                 res.os.values1[os.stable.fields],
                 tolerance=0.0000001)
    expect_equal(res.os1[os.volatile.fields],
                 res.os.values1[os.volatile.fields],
                 tolerance=0.1)
    expect_equal(res.os.dup1[os.stable.fields],
                 res.os.values1[os.stable.fields],
                 tolerance=0.0000001)
    expect_equal(res.os.dup1[os.volatile.fields],
                 res.os.values1[os.volatile.fields],
                 tolerance=0.1)
    
    
    #########################################################################
    #           Test with one expressed + one zero-epressed gene            #
    #########################################################################
    
    # TWO STAGE TEST
    res.ts.3 <- wasserstein.sc(dat2, condition2)
    res.ts.dup.3 <- wasserstein.sc(sce.a, sce.a2)
    
    # reference results
    res.ts.values.3 <- matrix(c( NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
                                 NA, NA, NA, NA, 0.8148052, 0.8, NA,
                                 0.8148052, 0.8), nrow=1)
    
    # we only test the stable fields here, because the volatile fields are
    # unchanging
    expect_equal(res.ts.3[ts.stable.fields],
                 res.ts.values.3[ts.stable.fields],
                 tolerance=0.0000001)
    expect_equal(res.ts.dup.3[ts.stable.fields],
                 res.ts.values.3[ts.stable.fields],
                 tolerance=0.0000001)


    # ONE STAGE TEST
    res.os.3 <- wasserstein.sc(dat2, condition2, "OS")
    res.os.dup.3 <- wasserstein.sc(sce.a, sce.a2, "OS")
    
    # reference results
    res.os.values.3 <- matrix(c(1.27496, 1.625523, 1.633163, 1.277952,
                                1.113671, 0.5194913, 0, 0, 0, 0.3815411, 250,
                                68.19, 31.81, 0, 0.004699766, 0), nrow=1)
    
    expect_equal(res.os.3[os.stable.fields],
                 res.os.values.3[os.stable.fields],
                 tolerance=0.000001)
    expect_equal(res.os.3[os.volatile.fields],
                 res.os.values.3[os.volatile.fields],
                 tolerance=0.1)
    expect_equal(res.os.dup.3[os.stable.fields],
                 res.os.values.3[os.stable.fields],
                 tolerance=0.000001)
    expect_equal(res.os.dup.3[os.volatile.fields],
                 res.os.values.3[os.volatile.fields],
                 tolerance=0.1)


    #########################################################################
    #           Test with a zero-expressed gene in both conditions          #
    #########################################################################
    
    # TWO STAGE PROCEDURE
    res.ts <- wasserstein.sc(dat3, condition3, permnum=10)
    res.ts.dup <- wasserstein.sc(sce.a2, sce.b2, permnum=10)
    res.ts.values2 <- matrix(c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
                               NA, NA, NA, 1, 1, NA, 1, 1), nrow=1)
    colnames(res.ts.values2) <- ts.names
    expect_equal(res.ts, res.ts.values2)
    expect_equal(res.ts.dup, res.ts.values2)
    expect_equal(res.ts, res.ts.dup)

    # ONE STAGE PROCEDURE
    res.os2 <- wasserstein.sc(dat3, condition3, method="OS", permnum=10)
    res.os.dup2 <- wasserstein.sc(sce.a2, sce.b2, method="OS", permnum=10)
    res.os.values2 <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 1, NA, NA, NaN, NaN,
                               NaN, 0, 1), nrow=1)
    colnames(res.os.values2) <- os.names
    expect_equal(res.os2, res.os.values2)
    expect_equal(res.os.dup2, res.os.values2)
    expect_equal(res.os2, res.os.dup2)
})


test_that("Example run wasserstein single cell", {

    expect_equal(   colnames(wasserstein.sc(dat, condition1, permnum=10)), 
                    ts.names)
    expect_equal(   colnames(wasserstein.sc(dat2, condition2, "OS", 10)),
                    os.names)
    expect_equal(   colnames(wasserstein.sc(sce.a, sce.b, "OS", 10)),
                    os.names)
    expect_equal(   colnames(wasserstein.sc(sce.a, sce.b2, permnum=10)),
                    ts.names)
})
goncalves-lab/diffexpR documentation built on Oct. 26, 2021, 5:08 p.m.