##' Prepare CMApost
##'
##' Template for the functions to prepare specific tasks. Most of this file should not be changed
##' Things to change:
##' - Name of function: prepare_CMApost -> prepare_[value of short_name_scale_str]
##' - dimensions parameter in standardized_names()
##' - 2 [ADAPT] chunks
##'
##' @title prepare_CMApost
##'
##' @param short_name_scale_str
##' @param DF_clean
##'
##' @return
##' @author gorkang
##' @export
prepare_CMApost <- function(DF_clean, short_name_scale_str, output_formats) {
# DEBUG
# targets::tar_load_globals()
# debug_function(prepare_CMApost)
# words_list = list(one = c('Hotel', 'River', 'Tree', 'Skin', 'Gold', 'Market', 'Paper', 'Child', 'King', 'Book'),
# two = c('Sky', 'Ocean', 'Flag', 'Dollar', 'Wife', 'Machine', 'Home', 'Earth', 'College', 'Butter'),
# three = c('Woman', 'Rock', 'Blood', 'Corner', 'Shoes', 'Letter', 'Girl', 'House', 'Valley', 'Engine'),
# four = c('Water', 'Church', 'Doctor', 'Palace', 'Fire', 'Garden', 'Sea', 'Village', 'Baby', 'Table'))
# [ADAPT 1/3]: Items to ignore and reverse, dimensions -----------------------
# ****************************************************************************
description_task = "" # Brief description here
items_to_ignore = c("000") # Ignore these items: If nothing to ignore, keep as is
items_to_reverse = c("000") # Reverse these items: If nothing to reverse, keep as is
## NameDimension1, NameDimension2 should be the names of the dimensions
## Inside each c() create a vector of the item numbers for the dimension
## Add lines as needed. If there are no dimensions, keep as is
items_dimensions = list(
NameDimension1 = c("000"),
NameDimension2 = c("000")
)
# [END ADAPT 1/3]: ***********************************************************
# ****************************************************************************
# Standardized names ------------------------------------------------------
names_list = standardized_names(short_name_scale = short_name_scale_str,
dimensions = names(items_dimensions),
help_names = FALSE) # [KEEP as FALSE]
# Create long -------------------------------------------------------------
DF_long_RAW = create_raw_long(DF_clean,
short_name_scale = short_name_scale_str,
numeric_responses = FALSE, # [TRUE or FALSE]
is_experiment = FALSE,
help_prepare = TRUE) # Show n of items, responses,... [CHANGE to FALSE]
# Match pre and post words ------------------------------------------------
# GET CMApre items to EXTRACT condition (list of words shown)
DICC_MemoryCondition =
# Get data from CMApre TASK
DF_clean |> dplyr::filter(trialid == "CMApre_04") |> dplyr::select(id, stimulus) |>
# Split stimulus to get a 10 item vector
dplyr::rowwise() |>
dplyr::mutate(WORDSseen = stringr::str_split(gsub("\\[|\\]", "", stimulus), pattern = ","))
# DF_long_RAW |>
# dplyr::left_join(DICC_MemoryCondition, by = "id") |>
# dplyr::select(id, trialid, RAW, WORDSseen) |>
# # dplyr::filter(id %in% c("989898", "testing")) |>
# dplyr::rowwise() |>
# dplyr::mutate(CMApost_Matches_DIRd = length(intersect(unlist(stringr::str_split(RAW, pattern = "; ")),
# unlist(WORDSseen))),
# CMApost_Responses_DIRd = length(unlist(stringr::str_split(RAW, pattern = "; "))),
# CMApost_Misses_DIRd = CMApost_Responses_DIRd - CMApost_Matches_DIRd)
#
#
# Create long DIR ------------------------------------------------------------
DF_long_DIR =
DF_long_RAW |>
dplyr::select(id, trialid, RAW) |>
# [ADAPT 2/3]: RAW to DIR for individual items -------------------------------
# ****************************************************************************
# Transformations
dplyr::mutate(
DIR = RAW
) |>
# HOW MANY WORDS MATCH?
dplyr::left_join(DICC_MemoryCondition, by = "id") |>
#dplyr::select(id, trialid, RAW, WORDSseen) |>
# dplyr::filter(id %in% c("989898", "testing")) |>
dplyr::rowwise() |>
dplyr::mutate(CMApost_Matches_DIRd = length(intersect(unlist(stringr::str_split(DIR, pattern = "; ")),
unlist(WORDSseen))),
CMApost_Responses_DIRd = length(unlist(stringr::str_split(DIR, pattern = "; "))),
CMApost_Misses_DIRd = CMApost_Responses_DIRd - CMApost_Matches_DIRd) |>
dplyr::select(-WORDSseen) |>
dplyr::rename(CMApost_Stimulus_DIRd = stimulus)
# [END ADAPT 2/3]: ***********************************************************
# ****************************************************************************
# Create DF_wide_RAW_DIR -----------------------------------------------------
DF_wide_RAW =
DF_long_DIR |>
tidyr::pivot_wider(
names_from = trialid,
values_from = c(RAW, DIR),
names_glue = "{trialid}_{.value}") |>
# NAs for RAW and DIR items
dplyr::mutate(!!names_list$name_RAW_NA := rowSums(is.na(across((-matches(paste0(short_name_scale_str, "_", items_to_ignore, "_RAW")) & matches("_RAW$"))))),
!!names_list$name_DIR_NA := rowSums(is.na(across((-matches(paste0(short_name_scale_str, "_", items_to_ignore, "_DIR")) & matches("_DIR$"))))))
# [ADAPT 3/3]: Scales and dimensions calculations ----------------------------
# ****************************************************************************
# Reliability -------------------------------------------------------------
# REL1 = auto_reliability(DF_wide_RAW, short_name_scale = short_name_scale_str, items = items_dimensions[[1]])
# items_RELd1 = REL1$item_selection_string
# [USE STANDARD NAMES FOR Scales and dimensions: names_list$name_DIRd[1], names_list$name_DIRt,...]
# CHECK with: create_formulas(type = "dimensions_DIR", functions = "sum", names(items_dimensions))
DF_wide_RAW_DIR =
DF_wide_RAW |>
dplyr::mutate(
# [CHECK] Using correct formula? rowMeans() / rowSums()
# Score Dimensions (see standardized_names(help_names = TRUE) for instructions)
# !!names_list$name_DIRd[1] := rowMeans(across(all_of(paste0(short_name_scale_str, "_", items_dimensions[[1]], "_DIR"))), na.rm = TRUE),
# !!names_list$name_DIRd[2] := rowSums(across(all_of(paste0(short_name_scale_str, "_", items_dimensions[[2]], "_DIR"))), na.rm = TRUE),
# Reliability Dimensions (see standardized_names(help_names = TRUE) for instructions)
# !!names_list$name_RELd[1] := rowMeans(across(all_of(paste0(short_name_scale_str, "_", items_RELd1, "_DIR"))), na.rm = TRUE),
# Score Scale
# !!names_list$name_DIRt := rowSums(across(all_of(matches("_DIR$"))), na.rm = TRUE)
) |>
dplyr::select(id, matches("06"), matches("_NA$"), dplyr::everything())
# [END ADAPT 3/3]: ***********************************************************
# ****************************************************************************
# CHECK NAs -------------------------------------------------------------------
check_NAs(DF_wide_RAW_DIR)
# Save files --------------------------------------------------------------
save_files(DF_wide_RAW_DIR, short_name_scale = short_name_scale_str, is_scale = TRUE, output_formats = output_formats)
# Output of function ---------------------------------------------------------
return(DF_wide_RAW_DIR)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.