##' Prepare SASS
##'
##' Template for the functions to prepare specific tasks. Most of this file should not be changed
##' Things to change:
##' - Name of function: prepare_SASS -> prepare_[value of short_name_scale_str]
##' - dimensions parameter in standardized_names()
##' - 2 [ADAPT] chunks
##'
##' @title prepare_SASS
##'
##' @param short_name_scale_str
##' @param DF_clean
##'
##' @return
##' @author gorkang
##' @export
prepare_SASS <- function(DF_clean, short_name_scale_str, output_formats) {
# DEBUG
# targets::tar_load_globals()
# jsPsychHelpeR::debug_function(prepare_SASS)
# [ADAPT]: Items to ignore, reverse and dimensions ---------------------------------------
# ****************************************************************************
items_to_ignore = c("001") # Ignore these items: If nothing to ignore, keep items_to_ignore = c("00")
items_to_reverse = c("018", "019", "021") # Reverse these items: If nothing to reverse, keep items_to_reverse = c("00")
# [REMEMBER]: REVISAR https://github.com/HeRm4nV/CSCN_Maker/issues/27
# REMEMBER ITEMS 2 and 3 both are two instances of the "same" item (work/home)
items_dimensions = list(
NameDimension1 = c("000")
)
# [END ADAPT]: ***************************************************************
# ****************************************************************************
# Standardized names ------------------------------------------------------
names_list = standardized_names(short_name_scale = short_name_scale_str,
dimensions = names(items_dimensions), # Use names of dimensions, "" or comment out line
help_names = FALSE) # help_names = FALSE once the script is ready
# Create long -------------------------------------------------------------
DF_long_RAW = create_raw_long(DF_clean, short_name_scale = short_name_scale_str, numeric_responses = FALSE, help_prepare = FALSE)
# Create long DIR ------------------------------------------------------------
DF_long_DIR =
DF_long_RAW |>
dplyr::select(id, trialid, RAW) |>
# [ADAPT]: RAW to DIR for individual items -----------------------------------
# ****************************************************************************
dplyr::mutate(
DIR =
dplyr::case_when(
RAW == "Moderadamente" & trialid == "SASS_10" ~ 1, # Moderadamente is the third option except for item SASS_10
grepl("Nada|Nada de entusiasmo|Insatisfactoria|Insatisfactorio|Nunca|Nadie|Pasivamente|Ningún valor|Para nada", RAW) ~ 0,
grepl("Poco|Poco entusiasmo|Justa|Justo|Raramente|Pocas personas|Poco valor|Levemente|No mucho|A veces", RAW) ~ 1,
grepl("Medianamente|Algo de gozo|Algo de entusiasmo|Buena|Bueno|Frecuentemente|Algunas personas|Activamente|A menudo|La mayor parte del tiempo|Algún valor|Moderadamente", RAW) ~ 2,
grepl("Mucho|Mucho entusiasmo|Muy buena|Muy bueno|Muy frecuente|Muchas personas|Muy activamente|Gran valor|Muy a menudo|Siempre|Completamente|Muchísimo", RAW) ~ 3,
is.na(RAW) ~ NA_real_,
trialid %in% paste0(short_name_scale_str, "_", items_to_ignore) ~ NA_real_,
TRUE ~ 9999
)
) |>
# Invert items
dplyr::mutate(
DIR =
dplyr::case_when(
DIR == 9999 ~ DIR, # To keep the missing values unchanged
trialid %in% paste0(short_name_scale_str, "_", items_to_reverse) ~ (3 - DIR),
TRUE ~ DIR
)
)
# [END ADAPT]: ***************************************************************
# ****************************************************************************
# Create DF_wide_RAW -----------------------------------------------------
DF_wide_RAW =
DF_long_DIR |>
tidyr::pivot_wider(
names_from = trialid,
values_from = c(RAW, DIR),
names_glue = "{trialid}_{.value}") |>
# NAs for RAW and DIR items
dplyr::mutate(!!names_list$name_RAW_NA := rowSums(is.na(across((-matches(paste0(short_name_scale_str, "_", items_to_ignore, "_RAW")) & matches("_RAW$"))))),
!!names_list$name_DIR_NA := rowSums(is.na(across((-matches(paste0(short_name_scale_str, "_", items_to_ignore, "_DIR")) & matches("_DIR$"))))))
# Reliability -------------------------------------------------------------
RELt = auto_reliability(DF_wide_RAW, short_name_scale = short_name_scale_str)
# With only a couple participants, it can happen that we only have one of the two
included_key_items = c("SASS_02_DIR", "SASS_03_DIR")[c("SASS_02_DIR", "SASS_03_DIR") %in% names(DF_wide_RAW)]
# items_RELt = c("02", "03", RELt$item_selection_string)
items_RELt = RELt$item_selection_string
# REVIEW: EN ESTE CASO, los items 02 y 03 NO ENTRAN EN alphadrop_me() pq tienen NA's, pero SI los incluimos aqui (???) ------
# [ADAPT]: Scales and dimensions calculations --------------------------------
# ****************************************************************************
# [USE STANDARD NAMES FOR Scales and dimensions: name_DIRt, name_DIRd1, etc.] Check with: standardized_names(help_names = TRUE)
DF_wide_RAW_DIR =
DF_wide_RAW |>
dplyr::mutate(
# Score Scale
!!names_list$name_DIRt := rowSums(across(all_of(matches("_DIR$"))), na.rm = TRUE),
# Reliability Scale
!!names_list$name_RELt := rowSums(across(all_of(c(included_key_items, paste0(short_name_scale_str, "_", items_RELt, "_DIR")))), na.rm = TRUE)
)
# [END ADAPT]: ***************************************************************
# ****************************************************************************
# CHECK NAs -------------------------------------------------------------------
check_NAs(DF_wide_RAW_DIR)
# Save files --------------------------------------------------------------
save_files(DF_wide_RAW_DIR, short_name_scale = short_name_scale_str, is_scale = TRUE, output_formats = output_formats)
# Output of function ---------------------------------------------------------
return(DF_wide_RAW_DIR)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.