R/bdpnormal.R

Defines functions posterior_normal

#' @title Bayesian Discount Prior: Gaussian mean values
#'
#' @description \code{bdpnormal} is used for estimating posterior samples from a
#'   Gaussian outcome where an informative prior is used. The prior weight is
#'   determined using a discount function. This code is modeled after the
#'   methodologies developed in Haddad et al. (2017).
#'
#' @param mu_t scalar. Mean of the current treatment group.
#' @param sigma_t scalar. Standard deviation of the current treatment group.
#' @param N_t scalar. Number of observations of the current treatment group.
#' @param mu0_t scalar. Mean of the historical treatment group.
#' @param sigma0_t scalar. Standard deviation of the historical treatment group.
#' @param N0_t scalar. Number of observations of the historical treatment group.
#' @param mu_c scalar. Mean of the current control group.
#' @param sigma_c scalar. Standard deviation of the current control group.
#' @param N_c scalar. Number of observations of the current control group.
#' @param mu0_c scalar. Mean of the historical control group.
#' @param sigma0_c scalar. Standard deviation of the historical control group.
#' @param N0_c scalar. Number of observations of the historical control group.
#' @param discount_function character. Specify the discount function to use.
#'   Currently supports \code{weibull}, \code{scaledweibull}, and
#'   \code{identity}. The discount function \code{scaledweibull} scales the
#'   output of the Weibull CDF to have a max value of 1. The \code{identity}
#'   discount function uses the posterior probability directly as the discount
#'   weight. Default value is "\code{identity}".
#' @param alpha_max scalar. Maximum weight the discount function can apply.
#'   Default is 1. For a two-arm trial, users may specify a vector of two values
#'   where the first value is used to weight the historical treatment group and
#'   the second value is used to weight the historical control group.
#' @param fix_alpha logical. Fix alpha at alpha_max? Default value is FALSE.
#' @param weibull_shape scalar. Shape parameter of the Weibull discount function
#'   used to compute alpha, the weight parameter of the historical data. Default
#'   value is 3. For a two-arm trial, users may specify a vector of two values
#'   where the first value is used to estimate the weight of the historical
#'   treatment group and the second value is used to estimate the weight of the
#'   historical control group. Not used when \code{discount_function} =
#'   "identity".
#' @param weibull_scale scalar. Scale parameter of the Weibull discount function
#'   used to compute alpha, the weight parameter of the historical data. Default
#'   value is 0.135. For a two-arm trial, users may specify a vector of two
#'   values where the first value is used to estimate the weight of the
#'   historical treatment group and the second value is used to estimate the
#'   weight of the historical control group. Not used when
#'   \code{discount_function} = "identity".
#' @param number_mcmc scalar. Number of Monte Carlo simulations. Default is
#'   10000.
#' @param method character. Analysis method with respect to estimation of the
#'   weight parameter alpha. Default method "\code{mc}" estimates alpha for each
#'   Monte Carlo iteration. Alternate value "\code{fixed}" estimates alpha once
#'   and holds it fixed throughout the analysis.  See the the \code{bdpnormal}
#'   vignette \cr \code{vignette("bdpnormal-vignette", package="bayesDP")} for
#'   more details.
#' @param compare logical. Should a comparison object be included in the fit?
#'   For a one-arm analysis, the comparison object is simply the posterior chain
#'   of the treatment group parameter. For a two-arm analysis, the comparison
#'   object is the posterior chain of the treatment effect that compares
#'   treatment and control. If \code{compare=TRUE}, the comparison object is
#'   accessible in the \code{final} slot, else the \code{final} slot is
#'   \code{NULL}. Default is \code{TRUE}.
#' @details \code{bdpnormal} uses a two-stage approach for determining the
#'   strength of historical data in estimation of a mean outcome. In the first
#'   stage, a \emph{discount function} is used that that defines the maximum
#'   strength of the historical data and discounts based on disagreement with
#'   the current data. Disagreement between current and historical data is
#'   determined by stochastically comparing the respective posterior
#'   distributions under noninformative priors. With Gaussian data, the
#'   comparison is the proability (\code{p}) that the current mean is less than
#'   the historical mean. The comparison metric \code{p} is then input into the
#'   discount function and the final strength of the historical data is returned
#'   (alpha).
#'
#'   In the second stage, posterior estimation is performed where the discount
#'   function parameter, \code{alpha}, is used incorporated in all posterior
#'   estimation procedures.
#'
#'   To carry out a single arm (OPC) analysis, data for the current treatment
#'   (\code{mu_t}, \code{sigma_t}, and \code{N_t}) and historical treatment
#'   (\code{mu0_t}, \code{sigma0_t}, and \code{N0_t}) must be input. The results
#'   are then based on the posterior distribution of the current data augmented
#'   by the historical data.
#'
#'   To carry our a two-arm (RCT) analysis, data for the current treatment and
#'   at least one of current or historical control data must be input. The
#'   results are then based on the posterior distribution of the difference
#'   between current treatment and control, augmented by available historical
#'   data.
#'
#'   For more details, see the \code{bdpnormal} vignette: \cr
#'   \code{vignette("bdpnormal-vignette", package="bayesDP")}
#'
#' @return \code{bdpnormal} returns an object of class "bdpnormal". The
#'   functions \code{\link[=summary,bdpnormal-method]{summary}} and
#'   \code{\link[=print,bdpnormal-method]{print}} are used to obtain and print a
#'   summary of the results, including user inputs. The
#'   \code{\link[=plot,bdpnormal-method]{plot}} function displays visual outputs
#'   as well.
#'
#' An object of class \code{bdpnormal} is a list containing at least
#' the following components:
#' \describe{
#'  \item{\code{posterior_treatment}}{
#'    list. Entries contain values related to the treatment group:
#'    \itemize{
#'      \item \code{alpha_discount}
#'        numeric. Alpha value, the weighting parameter of the historical data.
#'      \item \code{p_hat}
#'        numeric. The posterior probability of the stochastic comparison
#'        between the current and historical data.
#'      \item \code{posterior_mu}
#'        vector. A vector of length \code{number_mcmc} containing the posterior
#'        mean of the treatment group. If historical treatment data is present,
#'        the posterior incorporates the weighted historical data.
#'      \item \code{posterior_sigma2}
#'        vector. A vector of length \code{number_mcmc} containing the posterior
#'        variance of the treatment group. If historical treatment data is present,
#'        the posterior incorporates the weighted historical data.
#'      \item \code{posterior_flat_mu}
#'        vector. A vector of length \code{number_mcmc} containing
#'        Monte Carlo samples of the mean of the current treatment group
#'        under a flat/non-informative prior, i.e., no incorporation of the
#'        historical data.
#'      \item \code{posterior_flat_sigma2}
#'        vector. A vector of length \code{number_mcmc} containing
#'        Monte Carlo samples of the standard deviation of the current treatment group
#'        under a flat/non-informative prior, i.e., no incorporation of the
#'        historical data.
#'      \item \code{prior_mu}
#'        vector. If historical treatment data is present, a vector of length
#'        \code{number_mcmc} containing Monte Carlo samples of the mean
#'        of the historical treatment group under a flat/non-informative prior.
#'      \item\code{prior_sigma2}
#'        vector. If historical treatment data is present, a vector of length
#'        \code{number_mcmc} containing Monte Carlo samples of the standard deviation
#'        of the historical treatment group under a flat/non-informative prior.
#'    }
#'  }
#'  \item{\code{posterior_control}}{
#'    list. Similar entries as \code{posterior_treament}. Only present if a
#'    control group is specified.
#'  }
#'  \item{\code{final}}{
#'    list. Contains the final comparison object, dependent on the analysis type:
#'    \itemize{
#'      \item One-arm analysis:
#'        vector. Posterior chain of the mean.
#'      \item Two-arm analysis:
#'        vector. Posterior chain of the mean difference comparing treatment and
#'        control groups.
#'    }
#'  }
#'  \item{\code{args1}}{
#'    list. Entries contain user inputs. In addition, the following elements
#'    are output:
#'    \itemize{
#'      \item \code{arm2}
#'        binary indicator. Used internally to indicate one-arm or two-arm
#'        analysis.
#'      \item \code{intent}
#'        character. Denotes current/historical status of treatment and
#'        control groups.
#'    }
#'  }
#' }
#'
#' 
#' @seealso \code{\link[=summary,bdpnormal-method]{summary}},
#'   \code{\link[=print,bdpnormal-method]{print}},
#'   and \code{\link[=plot,bdpnormal-method]{plot}} for details of each of the
#'   supported methods.
#'
#' @references
#' Haddad, T., Himes, A., Thompson, L., Irony, T., Nair, R. MDIC Computer
#'   Modeling and Simulation working group.(2017) Incorporation of stochastic
#'   engineering models as prior information in Bayesian medical device trials.
#'   \emph{Journal of Biopharmaceutical Statistics}, 1-15.
#'
#' @examples
#' # One-arm trial (OPC) example
#' fit <- bdpnormal(
#'   mu_t = 30, sigma_t = 10, N_t = 50,
#'   mu0_t = 32, sigma0_t = 10, N0_t = 50,
#'   method = "fixed"
#' )
#' summary(fit)
#' \dontrun{
#' plot(fit)
#' }
#'
#' # Two-arm (RCT) example
#' fit2 <- bdpnormal(
#'   mu_t = 30, sigma_t = 10, N_t = 50,
#'   mu0_t = 32, sigma0_t = 10, N0_t = 50,
#'   mu_c = 25, sigma_c = 10, N_c = 50,
#'   mu0_c = 25, sigma0_c = 10, N0_c = 50,
#'   method = "fixed"
#' )
#' summary(fit2)
#' \dontrun{
#' plot(fit2)
#' }
#'
#' @rdname bdpnormal
#' @import methods
#' @importFrom stats sd density is.empty.model median model.offset
#'   model.response pweibull quantile rbeta rgamma rnorm var vcov
#' @importFrom ggplot2 aes facet_wrap geom_hline geom_line geom_vline ggplot
#'   theme_bw xlab ylab
#' @aliases bdpnormal-method
#' @aliases bdpnormal,ANY-method
#' @export bdpnormal
bdpnormal <- setClass("bdpnormal", slots = c(
  posterior_treatment = "list",
  posterior_control = "list",
  final = "list",
  args1 = "list"
))

setGeneric(
  "bdpnormal",
  function(mu_t = NULL,
           sigma_t = NULL,
           N_t = NULL,
           mu0_t = NULL,
           sigma0_t = NULL,
           N0_t = NULL,
           mu_c = NULL,
           sigma_c = NULL,
           N_c = NULL,
           mu0_c = NULL,
           sigma0_c = NULL,
           N0_c = NULL,
           discount_function = "identity",
           alpha_max = 1,
           fix_alpha = FALSE,
           weibull_scale = 0.135,
           weibull_shape = 3,
           number_mcmc = 10000,
           method = "mc",
           compare = TRUE) {
    standardGeneric("bdpnormal")
  }
)

setMethod(
  "bdpnormal",
  signature(),
  function(mu_t = NULL,
           sigma_t = NULL,
           N_t = NULL,
           mu0_t = NULL,
           sigma0_t = NULL,
           N0_t = NULL,
           mu_c = NULL,
           sigma_c = NULL,
           N_c = NULL,
           mu0_c = NULL,
           sigma0_c = NULL,
           N0_c = NULL,
           discount_function = "identity",
           alpha_max = 1,
           fix_alpha = FALSE,
           weibull_scale = 0.135,
           weibull_shape = 3,
           number_mcmc = 10000,
           method = "mc",
           compare = TRUE) {

    ################################################################################
    # Check Input                                                                  #
    ################################################################################

    intent <- c()
    if (length(mu_t + sigma_t + N_t) != 0) {
      intent <- c(intent, "current treatment")
      # cat("Current Treatment\n")
    } else {
      if (is.null(mu_t) == TRUE) {
        cat("mu_t missing\n")
      }
      if (is.null(sigma_t) == TRUE) {
        cat("sigma_t missing\n")
      }
      if (is.null(N_t) == TRUE) {
        cat("N_t missing\n")
      }
      stop("Current treatment not provided/incomplete.")
    }

    if (length(mu0_t + sigma0_t + N0_t) != 0) {
      intent <- c(intent, "historical treatment")
      # cat("Historical Treatment\n")
    } else {
      if (length(c(mu0_t, sigma0_t, N0_t)) > 0) {
        if (is.null(mu0_t) == TRUE) {
          cat("mu0_t missing\n")
        }
        if (is.null(sigma0_t) == TRUE) {
          cat("sigma0_t missing\n")
        }
        if (is.null(N0_t) == TRUE) {
          cat("N0_t missing\n")
        }
        stop("Historical treatment incomplete.")
      }
    }

    if (length(mu_c + sigma_c + N_c) != 0) {
      intent <- c(intent, "current control")
      # cat("Current Control\n")
    } else {
      if (length(c(mu_c, sigma_c, N_c)) > 0) {
        if (is.null(mu_c) == TRUE) {
          cat("mu_c missing\n")
        }
        if (is.null(sigma_c) == TRUE) {
          cat("sigma_c missing\n")
        }
        if (is.null(N_c) == TRUE) {
          cat("N_c missing\n")
        }
        stop("Current control not provided/incomplete.")
      }
    }

    if (length(mu0_c + sigma0_c + N0_c) != 0) {
      intent <- c(intent, "historical control")
      # cat("Historical Contro\nl")
    } else {
      if (length(c(mu0_c, sigma0_c, N0_c)) > 0) {
        if (is.null(mu0_c) == TRUE) {
          cat("mu0_c missing\n")
        }
        if (is.null(sigma0_c) == TRUE) {
          cat("sigma0_c missing\n")
        }
        if (is.null(N0_c) == TRUE) {
          cat("N0_c missing\n")
        }
        stop("Historical Control not provided/incomplete.")
      }
    }

    if (!is.null(N_c) | !is.null(N0_c)) {
      arm2 <- TRUE
    } else {
      arm2 <- FALSE
    }

    # Check that discount_function is input correctly
    all_functions <- c("weibull", "scaledweibull", "identity")
    function_match <- match(discount_function, all_functions)
    if (is.na(function_match)) {
      stop("discount_function input incorrectly.")
    }

    ##############################################################################
    # Quick check, if alpha_max, weibull_scale, or weibull_shape have length 1,
    # repeat input twice
    ##############################################################################

    if (length(alpha_max) == 1) {
      alpha_max <- rep(alpha_max, 2)
    }

    if (length(weibull_scale) == 1) {
      weibull_scale <- rep(weibull_scale, 2)
    }

    if (length(weibull_shape) == 1) {
      weibull_shape <- rep(weibull_shape, 2)
    }


    ################################################################################
    # Results                                                                      #
    ################################################################################

    posterior_treatment <- posterior_normal(
      mu = mu_t,
      sigma = sigma_t,
      N = N_t,
      mu0 = mu0_t,
      sigma0 = sigma0_t,
      N0 = N0_t,
      discount_function = discount_function,
      alpha_max = alpha_max[1],
      fix_alpha = fix_alpha,
      number_mcmc = number_mcmc,
      weibull_scale = weibull_scale[1],
      weibull_shape = weibull_shape[1],
      method = method
    )


    if (arm2) {
      posterior_control <- posterior_normal(
        mu = mu_c,
        sigma = sigma_c,
        N = N_c,
        mu0 = mu0_c,
        sigma0 = sigma0_c,
        N0 = N0_c,
        discount_function = discount_function,
        alpha_max = alpha_max[2],
        fix_alpha = fix_alpha,
        number_mcmc = number_mcmc,
        weibull_scale = weibull_scale[2],
        weibull_shape = weibull_shape[2],
        method = method
      )
    } else {
      posterior_control <- NULL
    }

    args1 <- list(
      mu_t = mu_t,
      sigma_t = sigma_t,
      N_t = N_t,
      mu0_t = mu0_t,
      sigma0_t = sigma0_t,
      N0_t = N0_t,
      mu_c = mu_c,
      sigma_c = sigma_c,
      N_c = N_c,
      mu0_c = mu0_c,
      sigma0_c = sigma0_c,
      N0_c = N0_c,
      discount_function = discount_function,
      alpha_max = alpha_max,
      fix_alpha = fix_alpha,
      weibull_scale = weibull_scale,
      weibull_shape = weibull_shape,
      number_mcmc = number_mcmc,
      method = method,
      arm2 = arm2,
      intent = paste(intent,
                     collapse = ", ",
                     compare = compare
      )
    )

    ##############################################################################
    ### Create final (comparison) object
    ##############################################################################

    if (!compare) {
      final <- NULL
    } else {
      if (arm2) {
        final <- list()
        final$posterior <- posterior_treatment$posterior_mu - posterior_control$posterior_mu
      } else {
        final <- list()
        final$posterior <- posterior_treatment$posterior_mu
      }
    }

    me <- list(
      posterior_treatment = posterior_treatment,
      posterior_control = posterior_control,
      final = final,
      args1 = args1
    )

    class(me) <- "bdpnormal"

    return(me)
  }
)

################################################################################
# Normal posterior estimation
# 1) Estimate the discount function (if current+historical data both present)
# 2) Estimate the posterior of the augmented data
################################################################################

posterior_normal <- function(mu, sigma, N, mu0, sigma0, N0, discount_function,
                             alpha_max, fix_alpha, number_mcmc, weibull_scale,
                             weibull_shape, method) {

  # Compute posterior(s) of current (flat) and historical (prior) data
  # with non-informative priors
  # Current data:
  if (!is.null(N)) {
    posterior_flat_sigma2 <- 1 / rgamma(number_mcmc, (N - 1) / 2, ((N - 1) * sigma^2) / 2)
    s <- (posterior_flat_sigma2 / ((N - 1) + 1))^0.5
    posterior_flat_mu <- rnorm(number_mcmc, mu, s)
  } else {
    posterior_flat_mu <- posterior_flat_sigma2 <- NULL
  }

  # Historical data:
  if (!is.null(N0)) {
    prior_sigma2 <- 1 / rgamma(number_mcmc, (N0 - 1) / 2, ((N0 - 1) * sigma0^2) / 2)
    s0 <- (prior_sigma2 / ((N0 - 1) + 1))^0.5
    prior_mu <- rnorm(number_mcmc, mu0, s0)
  } else {
    prior_mu <- prior_sigma2 <- NULL
  }

  ##############################################################################
  # Discount function
  ##############################################################################

  ### Compute stochastic comparison and alpha discount only if both
  ### N and N0 are present (i.e., current & historical data are present)
  if (!is.null(N) & !is.null(N0)) {

    ### Test of model vs real
    if (method == "fixed") {
      p_hat <- mean(posterior_flat_mu < prior_mu) # larger is higher failure
      p_hat <- 2 * ifelse(p_hat > 0.5, 1 - p_hat, p_hat)
    } else if (method == "mc") {
      Z <- abs(posterior_flat_mu - prior_mu) / sqrt(s^2 + s0^2)
      p_hat <- 2 * (1 - pnorm(Z))
    }

    ### Number of effective sample size given shape and scale discount function
    if (fix_alpha == TRUE) {
      alpha_discount <- alpha_max
    } else {
      # Compute alpha discount based on distribution
      if (discount_function == "weibull") {
        alpha_discount <- pweibull(p_hat,
                                   shape = weibull_shape,
                                   scale = weibull_scale
        ) * alpha_max
      } else if (discount_function == "scaledweibull") {
        max_p <- pweibull(1, shape = weibull_shape, scale = weibull_scale)

        alpha_discount <- pweibull(p_hat,
                                   shape = weibull_shape,
                                   scale = weibull_scale
        ) * alpha_max / max_p
      } else if (discount_function == "identity") {
        alpha_discount <- p_hat * alpha_max
      }
    }
  } else {
    alpha_discount <- NULL
    p_hat <- NULL
  }

  ##############################################################################
  # Posterior augmentation
  # - If current or historical data are missing, this will not augment but
  #   will return the posterior of the non-missing data (with flat prior)
  ##############################################################################

  ### If only the historical data is present, compute posterior on historical
  if (is.null(N0) & !is.null(N)) {
    posterior_sigma2 <- posterior_flat_sigma2
    posterior_mu <- rnorm(number_mcmc, posterior_flat_mu, sqrt(posterior_sigma2))
  } else if (!is.null(N0) & is.null(N)) {
    posterior_sigma2 <- prior_sigma2
    posterior_mu <- rnorm(number_mcmc, prior_mu, sqrt(posterior_sigma2))
  } else if (!is.null(N0) & !is.null(N)) {
    effective_N0 <- N0 * alpha_discount

    posterior_mu0 <- prior_sigma2 * N * mu + posterior_flat_sigma2 * effective_N0 * mu0
    posterior_mu0 <- posterior_mu0 / (N * prior_sigma2 + posterior_flat_sigma2 * effective_N0)

    posterior_sigma2 <- posterior_flat_sigma2 * prior_sigma2
    posterior_sigma2 <- posterior_sigma2 / (N * prior_sigma2 + posterior_flat_sigma2 * effective_N0)

    posterior_mu <- rnorm(number_mcmc, posterior_mu0, sqrt(posterior_sigma2))
  }

  return(list(
    alpha_discount = alpha_discount,
    p_hat = p_hat,
    posterior_mu = posterior_mu,
    posterior_sigma2 = posterior_sigma2,
    posterior_flat_mu = posterior_flat_mu,
    posterior_flat_sigma2 = posterior_flat_sigma2,
    prior_mu = prior_mu,
    prior_sigma2 = prior_sigma2
  ))
}
graemeleehickey/bayesDP documentation built on Dec. 30, 2024, 9:32 p.m.