library(dplyr)
library(readr)
library(stringr)
library(magrittr)
library(sf)
source("R/operators.R")
source("R/general_utils.R")
path <- "data-raw/maps/"
path_sf <- "data-raw/maps/shapefiles/"
# Crosswalks
nh_tract10 <- read_csv(path %p% "crosswalks/tract_to_nh.csv", col_types = "cc")
ma_tract <- read_csv(path %p% "crosswalks/tract_to_ma.csv", col_types = "cc")
watterson_tract <- read_csv(path %p% "crosswalks/tract_to_watterson.csv", col_types = "cn")
west_lou_tract10 <- read_csv(path %p% "crosswalks/tract_to_west_louisville.csv", col_types = "cn")
west_lou_tract <- read_csv(path %p% "crosswalks/tract_to_west_louisville_20.csv", col_types = "cn")
muw_tract10 <- read_csv(path %p% "crosswalks/Jefferson_Tract_Neighborhood.csv", col_types = "cc",
skip = 2, col_names = TRUE)
muw_tract <- read_csv(path %p% "crosswalks/TractsNew_2020.csv",
col_types = "ccnnnn",
col_names = TRUE)
attr(nh_tract10, 'spec') <- NULL
attr(ma_tract, 'spec') <- NULL
attr(watterson_tract, 'spec') <- NULL
attr(west_lou_tract10, 'spec') <- NULL
attr(west_lou_tract, 'spec') <- NULL
attr(muw_tract10, 'spec') <- NULL
attr(muw_tract, 'spec') <- NULL
ma_tract %<>% rename(market_area = `Market Area`)
muw_tract10 %<>%
transmute(
tract = "21111" %p% `Tract FIPS Code`,
neighborhood = Neighborhood)
muw_tract %<>%
transmute(
tract = GEOID20,
neighborhood = NEIGH1)
nh_tract <- nh_tract10 %>%
left_join(tract10_tract20, by = c("tract" = "tract10")) %>%
group_by(tract20, neighborhood) %>%
reframe(percent = sum(percent)) %>%
group_by(tract20) %>%
filter(percent == max(percent)) %>%
ungroup() %>%
transmute(
tract = tract20,
neighborhood)
#Shape files
map_elementary <- st_read(path_sf %p% "20192020_Elementary_Shapefile", quiet = TRUE)
#save(map_elementary, file = "../Projects/early-childhood/map_elementary.RData")
map_block_group10 <- st_read(path_sf %p% "block_group_2010", quiet = TRUE)
map_block_group <- st_read(path_sf %p% "block_group_2020", quiet = TRUE)
map_tract_all00 <- st_read(path_sf %p% "tract_all_2000", quiet = TRUE)
map_tract_all10 <- st_read(path_sf %p% "tract_all_2010", quiet = TRUE)
map_tract_all <- st_read(path_sf %p% "tract_all_2020", quiet = TRUE)
map_PUMA10 <- st_read(path_sf %p% "puma_2010", quiet = TRUE)
map_PUMA <- st_read(path_sf %p% "puma_2020", quiet = TRUE)
map_county <- st_read(path_sf %p% "county", quiet = TRUE)
map_zip <- st_read(path_sf %p% "zip", quiet = TRUE)
map_district10 <- st_read(path_sf %p% "Council_Districts_2010", quiet = TRUE)
map_district <- st_read(path_sf %p% "Council_Districts_2020", quiet = TRUE)
map_house <- st_read(path_sf %p% "house", quiet = TRUE)
map_senate <- st_read(path_sf %p% "senate", quiet = TRUE)
map_block_group10 %<>%
filter(
STATEFP == "21",
COUNTYFP == "111") %>%
st_transform(4326) %>%
transmute(
block_group = GEOID,
tract = "21111" %p% TRACTCE,
name = as.numeric(BLKGRPCE))
map_block_group %<>%
filter(STATEFP == "21",
COUNTYFP == "111") %>%
st_transform(4326) %>%
transmute(
block_group = GEOID,
tract = "21111" %p% TRACTCE,
name = as.numeric(BLKGRPCE))
# 2000 maps
map_tract_all00 %<>%
transmute(
FIPS = paste0(STATEFP00, COUNTYFP00),
tract = CTIDFP00) %>%
filter(FIPS %in% FIPS_df_two_stl$FIPS) %>%
st_transform(4326) %>%
arrange(tract)
map_tract00 <- map_tract_all00 %>%
filter(FIPS == "21111") %>%
transmute(
tract,
name = as.numeric(str_sub(tract, 6, 9) %p% "." %p% str_sub(tract, 10, 11)))
# 2010 maps
map_tract_all10 %<>%
transmute(
FIPS = paste0(STATEFP, COUNTYFP),
tract = GEOID) %>%
filter(FIPS %in% FIPS_df_two_stl$FIPS) %>%
st_transform(4326) %>%
arrange(tract)
map_tract10 <- map_tract_all10 %>%
filter(FIPS == "21111") %>%
transmute(
tract,
name = as.numeric(str_sub(tract, 6, 9) %p% "." %p% str_sub(tract, 10, 11)))
# 2020 maps
map_tract_all %<>%
transmute(
FIPS = paste0(STATEFP, COUNTYFP),
tract = GEOID) %>%
filter(FIPS %in% FIPS_df_two_stl$FIPS) %>%
st_transform(4326) %>%
arrange(tract)
map_tract <- map_tract_all %>%
filter(FIPS == "21111") %>%
left_join(nh_tract, by = "tract") %>%
transmute(
tract,
name = as.numeric(str_sub(tract, 6, 9) %p% "." %p% str_sub(tract, 10, 11)),
neighborhood)
# Summarize neighborhood areas
map_nh <- map_tract %>%
group_by(neighborhood) %>%
summarise(.groups = "drop")
map_muw <- map_tract %>%
select(-neighborhood) %>%
left_join(muw_tract, by = "tract") %>%
group_by(neighborhood) %>%
summarise(.groups = "drop")
map_market <- map_tract %>%
left_join(ma_tract, by = "tract") %>%
group_by(market_area) %>%
summarise(.groups = "drop")
# Load other kinds of maps
map_PUMA10 %<>%
transmute(
STATEFIP,
PUMA = as.numeric(PUMA)) %>%
filter(STATEFIP == "21", PUMA %in% 1701:1706) %>%
st_transform(4326)
map_PUMA %<>%
transmute(
STATEFIP = STATEFP20,
PUMA = as.numeric(PUMACE20)) %>%
filter(STATEFIP == "21", PUMA %in% 1701:1706) %>%
st_transform(4326)
map_zip %<>%
st_transform(4326) %>%
transmute(
zip = ZIPCODE)
map_county %<>%
transmute(
FIPS = STATEFP %p% COUNTYFP,
county = NAME)
map_county_peers <- map_county %>%
filter(FIPS %in% FIPS_df$FIPS) %>%
st_transform(4326)
map_msa_lou <- map_county %>%
filter(FIPS %in% MSA_FIPS$FIPS[MSA_FIPS$MSA == "31140"]) %>%
st_transform(4326)
map_house %<>%
filter(STATEFP == "21") %>%
transmute(
STATEFIP = STATEFP,
house_district = as.numeric(SLDLST)) %>%
st_transform(4326)
map_senate %<>%
filter(STATEFP == "21") %>%
transmute(
STATEFIP = STATEFP,
senate_district = as.numeric(SLDUST)) %>%
st_transform(4326)
map_district10 %<>%
st_transform(4326) %>%
transmute(district = coundist)
map_district %<>%
st_transform(4326) %>%
transmute(district = COUNDIST)
# Previous data
update_sysdata(
"nh_tract10", "ma_tract", "watterson_tract", "west_lou_tract10", "muw_tract10",
"map_tract_all00", "map_tract_all10",
"map_tract00", "map_tract10",
"map_block_group10",
"map_PUMA10",
"map_market",
"map_district10")
usethis::use_data(
nh_tract, west_lou_tract, muw_tract, map_tract_all, map_tract, map_block_group,
map_nh, map_muw,
map_PUMA,
map_zip,
map_county_peers, map_msa_lou,
map_house, map_senate, map_district,
overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.