#' best_baps_partition
#'
#' Function to combine smaller clusters from a fast hierarchical algorithm to maximise the BAPS likelihood.
#'
#' @import Matrix
#'
#' @param sparse.data a sparse SNP data object returned from import_fasta_sparse_nt
#' @param h a hclust object representing the hierarchical clustering that is to be cut
#' @param quiet suppress the printing of extra information (default=FALSE)
#'
#' @return a final clustering
#'
#' @examples
#'
#' fasta.file.name <- system.file("extdata", "seqs.fa", package = "fastbaps")
#' sparse.data <- import_fasta_sparse_nt(fasta.file.name)
#' d <- snp_dist(sparse.data)
#' d <- as.dist(d/max(d))
#' h <- hclust(d, method="ward.D2")
#' partition <- best_baps_partition(sparse.data, h)
#'
#' newick.file.name <- system.file("extdata", "seqs.fa.treefile", package = "fastbaps")
#' iqtree <- phytools::read.newick(newick.file.name)
#' h <- phytools::midpoint.root(iqtree)
#' best.partition <- best_baps_partition(sparse.data, h)
#'
#' @export
best_baps_partition <- function(sparse.data, h, quiet=FALSE){
# Check inputs
if(!is.list(sparse.data)) stop("Invalid value for sparse.data! Did you use the import_fasta_sparse_nt function?")
if(!(class(sparse.data$snp.matrix)=="dgCMatrix")) stop("Invalid value for sparse.data! Did you use the import_fasta_sparse_nt function?")
if(!is.numeric(sparse.data$consensus)) stop("Invalid value for sparse.data! Did you use the import_fasta_sparse_nt function?")
if(!is.matrix(sparse.data$prior)) stop("Invalid value for sparse.data! Did you use the import_fasta_sparse_nt function?")
if(!(class(h) %in% c("hclust", "phylo"))) stop("Invalid value for h! Should be a hclust or phylo object!")
if(class(h)=="phylo"){
if(!ape::is.rooted(h)) stop("phylo object must be rooted")
if (any(h$edge.length<0)) {
warning("some edge lengths < 0! These will be converted to 1e-6")
h$edge.length[h$edge.length<0] <- 1e-6
}
h <- ape::multi2di(h)
nh <- phytools::nodeHeights(h)
tip.edges <- h$edge[,2]<=length(h$tip.label)
h$edge.length[tip.edges] <- h$edge.length[tip.edges] + (max(nh)-nh[tip.edges,2])
h <- ape::collapse.singles(h, root.edge=TRUE)
h <- ape::as.hclust.phylo(h)
}
if(!all(colnames(sparse.data$snp.matrix) %in% h$labels
) || !(all(h$labels %in% colnames(sparse.data$snp.matrix)))){
stop("Label mismatch between hierarchy and sparse.data!")
}
sparse.data$snp.matrix <- sparse.data$snp.matrix[,match(h$labels, colnames(sparse.data$snp.matrix))]
if(!quiet){
print("Calculating node marginal llks...")
}
llks <- tree_llk(sparse.data, h$merge)
n.isolates <- ncol(sparse.data$snp.matrix)
if(!quiet){
print("Finding best partition...")
}
threshold <- log(0.5)
rk <- llks$rk[(n.isolates+1):length(llks$rk)]
clusters <- summarise_clusters(h$merge, rk, threshold, n.isolates)
clusters <- as.numeric(factor(clusters))
names(clusters) <- h$labels
return(clusters)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.