View source: R/compare_pangenome_covariates.R
compare_pangenome_covariates | R Documentation |
Tests whether covariates associated with different pangenomes are significantly associated with gene gain and loss or errors.
compare_pangenome_covariates(
fits,
covariates,
family = "Tweedie",
keep = "all",
modeldisp = FALSE,
ci_type = "norm",
conf = 0.95,
nboot = 100
)
fits |
a list of 'panfit' objects generated by the 'panstripe' function |
covariates |
a 'data.frame' object generated where the first column matches the names in the list of pangenomes. Covariates to be tested are given in subsequent columns. |
family |
the family used by glm. One of 'Tweedie', 'Poisson', 'Gamma' or 'Gaussian'. (default='Tweedie') |
keep |
a vector of a subset of the column names in the covariate data.frame. (default='all') |
modeldisp |
whether or not to model the dispersion as a function of the covariates of interest if using a Tweedie family (default=FALSE) |
ci_type |
the method used to calculate the bootstrap CI (default='bca'). See boot.ci for more details. |
conf |
A scalar indicating the confidence level of the required intervals (default=0.95) |
nboot |
the number of bootstrap replicates to perform (default=100) |
a list containing a summary of the comparison and the resulting 'glm' model object
simA <- simulate_pan(rate=1e-4, ngenomes = 50, fn_error_rate=1, fp_error_rate=1)
simB <- simulate_pan(rate=1e-3, ngenomes = 200, fn_error_rate=1, fp_error_rate=1)
simC <- simulate_pan(rate=5e-3, ngenomes = 100, fn_error_rate=1, fp_error_rate=1)
tfits <- purrr::map(list(A=simA, B=simB, C=simC), ~{
panstripe(.x$pa, .x$tree, nboot=10, ci_type='perc')
})
covariates <- tibble::tibble(
pangenome=c('A','B','C','E','F','G'),
dummy=c(1,2,3,1,2,2)
)
fits <- c(tfits, list(E=tfits[[1]], F=tfits[[2]], G=tfits[[3]]))
comp <- compare_pangenome_covariates(fits, covariates, modeldisp=TRUE)
comp$summary
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.