# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# #
# This first batch of simulations runs simulations for accuracy #
# over a range of parameters on the Random Walk AR model #
# The first part of this script creates a framework to run the #
# simulations, the second summarises different results, specifically for: #
# - ranging values of the autocorrelation parameter #
# - different jump sizes #
# - different values of the RW noise #
# #
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
library(tidyverse)
library(parallel) # for mclapply
library(DeCAFS)
library(AR1seg) # not available for R 4.x, added a function to the
library(fpop)
library(changepoint.np)
source("simulations/helper_functions.R")
##### SETTING UP SIMULATIONS #####
# range of model parameters
sigmaEtas <- seq(0, 3, by = .5)
sigmaNus <- seq(1, 5, by = 1)
phis <- seq(0, .99, length.out = 8)
# simulation settings
REPS <- 100 # number of replicates
N = 5e3 # lenght of the sequence
# jump sizes
jumpSizes <- seq(1, 20, by = 3)
# scenarios (see function scenarioGenerator in helper_functions.R to add more)
scenarios <- c("none", "up", "updown", "rand1")
# generate a list of simulations
simulations <- expand.grid(sigmaEta = sigmaEtas, sigmaNu = sigmaNus, phi = phis, scenario = scenarios, jumpSize = jumpSizes)
##### FUNCTION FOR RUNNING SIMULATIONS ####
runSim <- function(i, simulations) {
# here we save the simulation
fileName <- paste(c("simulations/resRWAR/", simulations[i, ], ".RData"), collapse = "")
# if file already exist, do not run
if (!file.exists(fileName)) {
cat("Running ", fileName, "\n")
p <- simulations[i, ]
Y <- mclapply(1:REPS, function(r) dataRWAR(N, phi = p$phi, sdEta = p$sigmaEta, sdNu = p$sigmaNu, jumpSize = p$jumpSize, type = as.character(p$scenario)), mc.cores = 6)
signal <- lapply(Y, function(r) r$signal)
y <- lapply(Y, function(r) r$y)
changepoints <- Y[[1]]$changepoints
# this is DeCAFS
resDeCAFS <- mclapply(y, DeCAFS, beta = (2 * log(N)), modelParam = list(sdEta = p$sigmaEta, sdNu = p$sigmaNu, phi = p$phi), mc.cores = 6)
# this is fpop
resfpop <- lapply(y, Fpop, lambda = (2 * (p$sigmaNu^2) * log(N))) # the lambda here is the beta
# fpop inflated penalty
if(p$phi != 0)
resenffpop <- lapply(y, Fpop, lambda = (2 * (p$sigmaNu^2) * (1 + p$phi) / (1 - p$phi) * log(N)))
else
resenffpop <- resfpop
# ar1seg
resar1seg <- mclapply(y, function(y) AR1seg_func(y, Kmax = 40, rho = p$phi), mc.cores = 6)
# threshold method
resThreshold <- mclapply(y, l2Threshold, beta = 2 * log(length(y)), lambda = 1/(p$sigmaEta^2), mc.cores = 6)
# DeCAFS K 15
if (p$sigmaEta == 0)
resDeCAFSESTK15 <- mclapply(y, function(y){
est <- estimateParameters(y, sdEtaUpper = .0001)
est$sdEta <- 0
DeCAFS(y, beta = 2 * log(N), modelParam = est)
}, mc.cores = 6)
else
resDeCAFSESTK15 <- mclapply(y, DeCAFS, mc.cores=6)
# ar1seg with estimator
resar1segEST <- mclapply(y, AR1seg_func, Kmax = 40, mc.cores=6)
# threshold with estimator
resThresholdEST15 <- mclapply(y, function(y){
est <- estimateParameters(y)
l2Threshold(y, beta = 2 * log(N), lambda = 1/est$sdEta^2)
}, mc.cores = 6)
resNPPELT <- mclapply(y, cpt.np, pen.value = (2 * (p$sigmaNu^2) * log(N)), nquantiles = 15, class = T, mc.cores = 6)
save(
signal,
y,
changepoints,
resDeCAFS,
resfpop,
resenffpop,
resar1seg,
resThreshold,
resDeCAFSESTK15,
resar1segEST,
resThresholdEST15,
resNPPELT,
file = fileName
)
}
}
##### PART 1 - AR ONLY FOR RANGING PHI #####
# selecting the relevant simulations
toSummarize <- simulations %>% filter(sigmaEta == 0, sigmaNu == 2, jumpSize == 10)
# running the simulations (set to T to run)
if (F) lapply(1:nrow(toSummarize), runSim, simulations = toSummarize)
# generate the F1 dataset
F1df <- mclapply(1:nrow(toSummarize), function(i) {
p <- toSummarize[i, ]
print(p)
fileName <- paste(c("simulations/resRWAR/", p, ".RData"), collapse = "")
if (!file.exists(fileName)) {
cat("Missing", paste0(Map(paste, names(p), p), collapse = " "), "\n")
return(NULL)
} else load(fileName)
DeCAFSdf <- cbind(p$phi,
sapply(resDeCAFS, function(r) computeF1Score(c(changepoints, N), c(r$changepoints, N), 3)) %>% as.numeric,
as.character(p$scenario),
"DeCAFS")
fpopdf <- cbind(p$phi,
sapply(resfpop, function(r) computeF1Score(c(changepoints, N), r$t.est, 3)) %>% as.numeric,
as.character(p$scenario),
"fpop")
enffpopdf <- cbind(p$phi,
sapply(resenffpop, function(r) computeF1Score(c(changepoints, N), r$t.est, 3)) %>% as.numeric,
as.character(p$scenario),
"fpop Inf")
AR1segdf <- cbind(p$phi,
sapply(resar1seg, function(r)
computeF1Score(c(changepoints, N), r$PPSelectedBreaks, 3)) %>% as.numeric, # comptuting the F1
as.character(p$scenario),
"AR1Seg")
AR1segdfest <- cbind(p$phi,
sapply(resar1segEST, function(r)
computeF1Score(c(changepoints, N), r$PPSelectedBreaks, 3)) %>% as.numeric, # comptuting the F1
as.character(p$scenario),
"AR1Seg est")
DeCAFSdfK15 <- cbind(p$phi,
sapply(resDeCAFSESTK15, function(r) computeF1Score(c(changepoints, N), c(r$changepoints, N), 3)) %>% as.numeric,
as.character(p$scenario),
"DeCAFS est")
NPPELT <- cbind(p$phi,
sapply(resNPPELT, function(r) computeF1Score(c(changepoints, N), c(r@cpts, N), 3)) %>% as.numeric,
as.character(p$scenario),
"NP-PELT")
return(rbind(DeCAFSdf, fpopdf, enffpopdf, AR1segdf, DeCAFSdfK15, AR1segdfest, NPPELT))
}, mc.cores = 6)
F1df <- Reduce(rbind, F1df)
colnames(F1df) <- c("phi", "F1Score", "Scenario", "Algorithm")
F1df <- as_tibble(F1df) %>% mutate(phi = as.numeric(phi),
F1Score = as.numeric(F1Score))
# save dataset
save(F1df, file = "simulations/outputs/F1AR.RData")
# load dataset
load("simulations/outputs/F1AR.RData")
cbPalette <- c("#0072B2", "#56B4E9", "#009E73", "#33cc00", "#E69F00", "#CC79A7", "#984447")
scores <- ggplot(F1df %>% filter(Algorithm != "DeCAFS est (5)" & Algorithm != "DeCAFS est (10)" & Algorithm != "NP-PELT"),
aes(x = phi, y = F1Score, group = Algorithm, by = Algorithm, col = Algorithm)) +
geom_vline(xintercept = unique(simulations$phi)[7], col = "grey", lty = 2) +
stat_summary(fun.data = "mean_se", geom = "line") +
stat_summary(fun.data = "mean_se", geom = "errorbar", width = .05) +
facet_wrap(~ Scenario) +
scale_color_manual(values = cbPalette) +
xlab(expression(italic(phi)))
scores
ggsave(scores, width = 7, height = 7, file = "simulations/outputs/1-AR.pdf", device = "pdf", dpi = "print")
##### PART 2 - AR ONLY FOR VARIOUS JUMP SIZES #####
# selecting the relevant simulations
toSummarize <- simulations %>% filter(sigmaEta == 0, sigmaNu == 2, phi == unique(simulations$phi)[7])
# running the simulations
if (F) lapply(1:nrow(toSummarize), runSim, simulations = toSummarize)
F1df <- lapply(1:nrow(toSummarize), function(i) {
p <- toSummarize[i, ]
print(p)
fileName <- paste(c("simulations/resRWAR/", p, ".RData"), collapse = "")
if (!file.exists(fileName)) {
cat("Missing", paste0(Map(paste, names(p), p), collapse = " "), "\n")
return(NULL)
} else load(fileName)
DeCAFSdf <- cbind(p$jumpSize,
sapply(resDeCAFS, function(r) computeF1Score(c(changepoints, N), c(r$changepoints, N), 3)) %>% as.numeric,
as.character(p$scenario),
"DeCAFS")
fpopdf <- cbind(p$jumpSize,
sapply(resfpop, function(r) computeF1Score(c(changepoints, N), r$t.est, 3)) %>% as.numeric,
as.character(p$scenario),
"fpop")
enffpopdf <- cbind(p$jumpSize,
sapply(resenffpop, function(r) computeF1Score(c(changepoints, N), r$t.est, 3)) %>% as.numeric,
as.character(p$scenario),
"fpop Inf")
AR1segdf <- cbind(p$jumpSize,
sapply(resar1seg, function(r)
computeF1Score(c(changepoints, N), r$PPSelectedBreaks, 3)) %>% as.numeric, # comptuting the F1
as.character(p$scenario),
"AR1Seg")
AR1segdfest <- cbind(p$jumpSize,
sapply(resar1segEST, function(r)
computeF1Score(c(changepoints, N), r$PPSelectedBreaks, 3)) %>% as.numeric, # comptuting the F1
as.character(p$scenario),
"AR1Seg est")
DeCAFSdfK15 <- cbind(p$jumpSize,
sapply(resDeCAFSESTK15, function(r) computeF1Score(c(changepoints, N), c(r$changepoints, N), 3)) %>% as.numeric,
as.character(p$scenario),
"DeCAFS est")
NPPELT <- cbind(p$jumpSize,
sapply(resNPPELT, function(r) computeF1Score(c(changepoints, N), c(r@cpts, N), 3)) %>% as.numeric,
as.character(p$scenario),
"NP-PELT")
return(rbind(DeCAFSdf, fpopdf, enffpopdf, AR1segdf, DeCAFSdfK15, AR1segdfest, NPPELT))
})
F1df <- Reduce(rbind, F1df)
colnames(F1df) <- c("jumpSize", "F1Score", "Scenario", "Algorithm")
F1df <- as_tibble(F1df) %>% mutate(jumpSize = as.numeric(jumpSize),
F1Score = as.numeric(F1Score))
save(F1df, file = "simulations/outputs/F1ARJumpSize.RData")
# load dataset
load("simulations/outputs/F1ARJumpSize.RData")
cbPalette <- c("#0072B2", "#56B4E9", "#009E73", "#33cc00", "#E69F00", "#CC79A7", "#984447")
scoresJump <- ggplot(F1df %>% filter(Algorithm != "DeCAFS est (5)" & Algorithm != "DeCAFS est (10)" & Algorithm != "NP-PELT"),
aes(x = jumpSize, y = F1Score, group = Algorithm, by = Algorithm, col = Algorithm)) +
geom_vline(xintercept = 10, col = "grey", lty = 2) +
stat_summary(fun.data = "mean_se", geom = "line") +
stat_summary(fun.data = "mean_se", geom = "errorbar", width = .5) +
facet_wrap(~ Scenario) +
scale_color_manual(values = cbPalette) +
xlab("Jump Size")
scoresJump
##### PART 3 - RWAR FOR RANGING SDETA #####
# selecting the simulations with sd_nu = 2
toSummarize <- simulations %>% filter(phi == (simulations$phi %>% unique())[7], sigmaNu == 2, jumpSize == 10)
if (F) lapply(1:nrow(toSummarize), runSim, simulations = toSummarize)
F1df <- mclapply(1:nrow(toSummarize), function(i) {
p <- toSummarize[i, ]
print(p)
fileName <- paste(c("simulations/resRWAR/", p, ".RData"), collapse = "")
if (!file.exists(fileName)) {
cat("Missing", paste0(Map(paste, names(p), p), collapse = " "), "\n")
return(NULL)
} else load(fileName)
DeCAFSdf <- cbind(p$sigmaEta,
sapply(resDeCAFS, function(r) computeF1Score(c(changepoints, N), c(r$changepoints, N), 3)) %>% as.numeric,
as.character(p$scenario),
"DeCAFS")
fpopdf <- cbind(p$sigmaEta,
sapply(resfpop, function(r) computeF1Score(c(changepoints, N), r$t.est, 3)) %>% as.numeric,
as.character(p$scenario),
"fpop")
enffpopdf <- cbind(p$sigmaEta,
sapply(resenffpop, function(r) computeF1Score(c(changepoints, N), r$t.est, 3)) %>% as.numeric,
as.character(p$scenario),
"fpop Enf")
AR1segdf <- cbind(p$sigmaEta,
sapply(resar1seg, function(r)
computeF1Score(c(changepoints, N), r$PPSelectedBreaks, 3)) %>% as.numeric, # comptuting the F1
as.character(p$scenario),
"AR1Seg")
AR1segdfest <- cbind(p$sigmaEta,
sapply(resar1segEST, function(r)
computeF1Score(c(changepoints, N), r$PPSelectedBreaks, 3)) %>% as.numeric, # comptuting the F1
as.character(p$scenario),
"AR1Seg est")
DeCAFSdfK15 <- cbind(p$sigmaEta,
sapply(resDeCAFSESTK15, function(r) computeF1Score(c(changepoints, N), c(r$changepoints, N), 3)) %>% as.numeric,
as.character(p$scenario),
"DeCAFS est")
NPPELT <- cbind(p$sigmaEta,
sapply(resNPPELT, function(r) computeF1Score(c(changepoints, N), c(r@cpts, N), 3)) %>% as.numeric,
as.character(p$scenario),
"NP-PELT")
return(rbind(DeCAFSdf, fpopdf, enffpopdf, AR1segdf, DeCAFSdfK15, AR1segdfest, NPPELT))
}, mc.cores = 4)
F1df <- Reduce(rbind, F1df)
colnames(F1df) <- c("SigmaEta", "F1Score", "Scenario", "Algorithm")
F1df <- as_tibble(F1df) %>% mutate(SigmaEta = as.numeric(SigmaEta),
F1Score = as.numeric(F1Score))
save(F1df, file = "simulations/outputs/F1RWAR.RData")
load("simulations/outputs/F1RWAR.RData")
cbPaletteEDIT <- c("#56B4E9", "#009E73", "#33cc00", "#E69F00", "#CC79A7", "#984447")
scoresRWAR <- ggplot(F1df %>% filter(Algorithm != "DeCAFS est (5)" & Algorithm != "DeCAFS est (10)" & Algorithm != "AR1Seg" & Algorithm != "NP-PELT"),
aes(x = SigmaEta, y = F1Score, group = Algorithm, by = Algorithm, col = Algorithm)) +
geom_vline(xintercept = 0, col = "grey", lty = 2) +
stat_summary(fun.data = "mean_se", geom = "line") +
stat_summary(fun.data = "mean_se", geom = "errorbar", width = 0.08) +
facet_wrap(~ Scenario) +
scale_color_manual(values = cbPaletteEDIT) +
xlab(expression(sigma[eta]))
scoresRWAR
#### COMPLETE PLOT ####
library(ggpubr)
# getting legend out
fullLegend <- get_legend(scores)
outPlot <-
ggarrange(
scores,
scoresJump,
scoresRWAR,
as_ggplot(fullLegend),
labels = c("A", "B", "C", ""),
legend = "none"
)
ggsave(outPlot, width = 10, height = 10, file = "simulations/outputs/1-RWARcomplete.pdf", device = "pdf", dpi = "print")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.