scgsva: GSVA function for single cell data or data.frame with...

View source: R/enrich.R

scgsvaR Documentation

GSVA function for single cell data or data.frame with expression value

Description

GSVA function for single cell data or data.frame with expression value

Usage

scgsva(
  obj,
  annot = NULL,
  assay = NULL,
  slot = "counts",
  batch = 1000,
  method = "ssgsea",
  kcdf = "Poisson",
  abs.ranking = FALSE,
  min.sz = 1,
  max.sz = Inf,
  mx.diff = TRUE,
  ssgsea.norm = TRUE,
  useTerm = TRUE,
  BPPARAM = SnowParam(),
  cores = 4,
  verbose = TRUE,
  sc.keep=TRUE,
  ...
)

Arguments

obj

The count matrix, Seurat, or SingleCellExperiment object.

annot

annotation object

assay

Assay to use in GSVA analysis ('RNA','SCT' or 'Spatial' if spatial transcriptomics)

slot

Specific assay data to get or set

method

to employ in the estimation of gene-set enrichment scores per sample. By default this is set to ssgsea, you can also set it as UCell if you would like use the UCell method

kcdf

Character string denoting the kernel to use during the non-parametric estimation of the cumulative distribution function of expression levels across samples when method="ssgsea". By default, kcdf="Poisson"

abs.ranking

Flag used only when mx.diff=TRUE.

min.sz

Minimum size of the resulting gene sets

max.sz

Maximum size of the resulting gene sets.

mx.diff

Offers two approaches to calculate the enrichment statistic (ES) from the KS random walk statistic.

ssgsea.norm

Logical, set to TRUE (default) with method="ssgsea" runs the SSGSEA method

useTerm

use Term or use id (default: TRUE)

cores

The number of cores to use for parallelization.

sc.keep

keep the whole single cell data or not. Default: TRUE.

verbose

Gives information about each calculation step. Default: FALSE.

Author(s)

Kai Guo

Examples

set.seed(123)
library(scGSVA)
data(pbmc_small)
hsko<-buildAnnot(species="human",keytype="SYMBOL",anntype="KEGG")
res<-scgsva(pbmc_small,hsko)

guokai8/scGSVA documentation built on Nov. 15, 2024, 12:54 a.m.