# R/mixture.R In hafen/ed: ed: a regression approach to density estimation

#### Documented in dmixrmix

```#' Mixture of Normal Distributions
#'
#' Density and random generation of a mixture of normal distributions
#'
#' @param x vector of quantiles
#' @param n number of observations
#' @param mu vector of means
#' @param sigma vector of standard deviations
#' @param delta vector
#'
#' @return \code{dmix} gives the density and \code{rnorm} generates random deviates
#'
#' @details If a scalar is specified for any of the parameters, it will be replicated to meet the length of the other parameters.  If the \code{delta} values do not sum to 1, they will be normalized with a warning.
#'
#' @author Ryan Hafen
#'
#' @examples
#' mu <- c(0, 2, 3.5, 5, 8)
#' sigma <- c(0.5, 0.7, 0.3, 0.6, 1.4)
#' delta <- 0.2
#'
#' x <- rmix(2000, mu, sigma, delta)
#' hist(x, breaks = 100, freq = FALSE)
#'
#' ss <- seq(-2, 12, length = 200)
#' lines(ss, dmix(ss, mu, sigma, delta), col = "red")
#' @rdname rdmix
#' @export
rmix <- function(n, mu = 0, sigma = 1, delta = 1) {
pars <- validate_mix_params(mu, sigma, delta)

nb <- apply(rmultinom(n, 1, pars\$delta), 1, sum)

res <- unlist(lapply(seq_len(pars\$np), function(i) {
rnorm(nb[i], pars\$mu[i], pars\$sigma[i])
}))
res[sample(1:n)]
}

#' @rdname rdmix
#' @export
dmix <- function(x, mu, sigma, delta) {
pars <- validate_mix_params(mu, sigma, delta)

apply(do.call(rbind, lapply(seq_len(pars\$np), function(i) {
pars\$delta[i] * dnorm(x, pars\$mu[i], pars\$sigma[i])
})),
2, sum)
}

validate_mix_params <- function(mu, sigma, delta) {
n_mu    <- length(mu)
n_sigma <- length(sigma)
n_delta <- length(delta)

np <- max(c(n_mu, n_sigma, n_delta))

if (n_mu < np) {
if (length(mu) == 1) {
mu <- rep(mu, np)
} else {
stop("mu must be a scalar or vector the same length as sigma and delta")
}
}

if (n_sigma < np) {
if (length(sigma) == 1) {
sigma <- rep(sigma, np)
} else {
stop("sigma must be a scalar or vector the same length as sigma and delta")
}
}

if (n_delta < np) {
if (length(delta) == 1) {
delta <- rep(delta, np)
} else {
stop("mu must be a scalar or vector the same length as sigma and delta")
}
}

if (sum(delta) != 1) {
warning("Values for delta sum to ", sum(delta), " but should sum to 1.  Normalizing...")
delta <- delta / sum(delta)
}

list(mu = mu, sigma = sigma, delta = delta, np = np)
}
```
hafen/ed documentation built on May 17, 2019, 1:32 p.m.