## PLOTMDS.R
# Class to hold multidimensional scaling output
setClass("MDS",representation("list"))
setMethod("show","MDS",function(object) {
cat("An object of class MDS\n")
print(unclass(object))
})
plotMDS <- function(x,...) UseMethod("plotMDS")
plotMDS.MDS <- function(x,labels=NULL,pch=NULL,cex=1,dim.plot=NULL,xlab=NULL,ylab=NULL,var.explained=TRUE,...)
# Method for MDS objects
# Create a new plot using MDS coordinates previously computed.
# Gordon Smyth and Yifang Hu
# 21 May 2011. Last modified 6 Aug 2021
{
# Check labels
if(is.null(labels) & is.null(pch)) {
labels <- colnames(x$distance.matrix.squared)
if(is.null(labels)) labels <- 1:length(x$x)
}
# Are new dimensions requested?
if(is.null(dim.plot)) {
dim.plot <- x$dim.plot
} else {
if(!identical(dim.plot,x$dim.plot)) {
x$dim.plot <- dim.plot
lambda <- pmax(x$eigen.values,0)
i <- dim.plot[1]
x$x <- x$eigen.vectors[,i] * sqrt(lambda[i])
if(lambda[i] < 1e-13) warning("dimension ", i, " is degenerate or all zero")
i <- dim.plot[2]
x$y <- x$eigen.vectors[,i] * sqrt(lambda[i])
if(lambda[i] < 1e-13) warning("dimension ", i, " is degenerate or all zero")
}
}
# Axis labels
if(is.null(x$axislabel)) x$axislabel <- "Principal Coordinate"
if(is.null(xlab)) xlab <- paste(x$axislabel,dim.plot[1])
if(is.null(ylab)) ylab <- paste(x$axislabel,dim.plot[2])
if(var.explained) {
Perc <- round(x$var.explained[dim.plot]*100)
xlab <- paste0(xlab," (",Perc[1],"%)")
ylab <- paste0(ylab," (",Perc[2],"%)")
}
# Make the plot
if(is.null(labels)){
# Plot symbols instead of text
plot(x$x, x$y, pch = pch, xlab = xlab, ylab = ylab, cex = cex, ...)
} else {
# Plot text.
labels <- as.character(labels)
# Need to estimate width of labels in plot coordinates.
# Estimate will be ok for default plot width, but maybe too small for smaller plots.
StringRadius <- 0.01*cex*nchar(labels)
left.x <- x$x-StringRadius
right.x <- x$x+StringRadius
plot(c(left.x, right.x), c(x$y, x$y), type = "n", xlab = xlab, ylab = ylab, ...)
text(x$x, x$y, labels = labels, cex = cex, ...)
}
invisible(x)
}
plotMDS.default <- function(x,top=500,labels=NULL,pch=NULL,cex=1,dim.plot=c(1,2),gene.selection="pairwise",xlab=NULL,ylab=NULL,plot=TRUE,var.explained=TRUE,...)
# Multi-dimensional scaling with top-distance
# Di Wu and Gordon Smyth
# 19 March 2009. Last modified 13 May 2021.
{
# Check x
x <- as.matrix(x)
nsamples <- ncol(x)
if(nsamples < 3) stop(paste("Only",nsamples,"columns of data: need at least 3"))
cn <- colnames(x)
# Remove rows with missing or Inf values
bad <- rowSums(is.finite(x)) < nsamples
if(any(bad)) x <- x[!bad,,drop=FALSE]
nprobes <- nrow(x)
# Check top
top <- min(top,nprobes)
# Check labels and pch
if(is.null(pch) & is.null(labels)) {
labels <- colnames(x)
if(is.null(labels)) labels <- 1:nsamples
}
if(!is.null(labels)) labels <- as.character(labels)
# Check dim.plot
dim.plot <- unique(as.integer(dim.plot))
if(length(dim.plot) != 2L) stop("dim.plot must specify two dimensions to plot")
# Check dim
ndim <- max(dim.plot)
if(ndim < 2L) stop("Need at least two dim.plot")
if(nsamples < ndim) stop("ndim is greater than number of samples")
if(nprobes < ndim) stop("ndim is greater than number of rows of data")
# Check gene.selection
gene.selection <- match.arg(gene.selection,c("pairwise","common"))
# Distance matrix from pairwise leading fold changes
dd <- matrix(0,nrow=nsamples,ncol=nsamples,dimnames=list(cn,cn))
if(gene.selection=="pairwise") {
# Distance measure is mean of top squared deviations for each pair of arrays
topindex <- nprobes-top+1L
for (i in 2L:(nsamples))
for (j in 1L:(i-1L))
dd[i,j]=mean(sort.int((x[,i]-x[,j])^2,partial=topindex)[topindex:nprobes])
axislabel <- "Leading logFC dim"
} else {
# Same genes used for all comparisons
if(nprobes > top) {
s <- rowMeans((x-rowMeans(x))^2)
o <- order(s,decreasing=TRUE)
x <- x[o[1L:top],,drop=FALSE]
}
for (i in 2L:(nsamples))
dd[i,1L:(i-1L)]=colMeans((x[,i]-x[,1:(i-1),drop=FALSE])^2)
axislabel <- "Principal Component"
}
# Multi-dimensional scaling
dd <- dd + t(dd)
rm <- rowMeans(dd)
dd <- dd - rm
dd <- t(dd) - (rm - mean(rm))
mds <- eigen(-dd/2, symmetric=TRUE)
names(mds) <- c("eigen.values","eigen.vectors")
# Make MDS object
lambda <- pmax(mds$eigen.values,0)
mds$var.explained <- lambda / sum(lambda)
mds$dim.plot=dim.plot
mds$distance.matrix.squared=dd
mds$top=top
mds$gene.selection=gene.selection
mds$axislabel <- axislabel
mds <- new("MDS",unclass(mds))
# Add coordinates for plot
i <- dim.plot[1]
mds$x <- mds$eigen.vectors[,i] * sqrt(lambda[i])
if(lambda[i] < 1e-13) warning("dimension ", i, " is degenerate or all zero")
i <- dim.plot[2]
mds$y <- mds$eigen.vectors[,i] * sqrt(lambda[i])
if(lambda[i] < 1e-13) warning("dimension ", i, " is degenerate or all zero")
if(plot)
plotMDS(mds,labels=labels,pch=pch,cex=cex,xlab=xlab,ylab=ylab,var.explained=var.explained,...)
else
mds
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.