context('Data segmentation')
library(maidrr)
# Use a gbm fit on the mtpl_be data to test the partial dependence function
if (!requireNamespace('gbm', quietly = TRUE)) {
stop('Package "gbm" needed for this function to work. Please install it.',
call. = FALSE)
}
data('mtpl_be')
features <- setdiff(names(mtpl_be),c('id', 'nclaims', 'expo', 'postcode'))
set.seed(12345)
gbm_fit <- gbm::gbm(as.formula(paste('nclaims ~',
paste(features, sep = ' ', collapse = ' + '))),
distribution = 'poisson',
data = mtpl_be,
n.trees = 50,
interaction.depth = 3,
shrinkage = 0.1)
gbm_fun <- function(object, newdata) mean(predict(object, newdata, n.trees = object$n.trees, type = 'response'))
fx_vars <- gbm_fit %>% insights(vars = c('ageph', 'bm', 'coverage', 'fuel', 'bm_fuel', 'ageph_coverage'),
data = mtpl_be,
interactions = 'user',
pred_fun = gbm_fun)
test_that('output is of the expected format when using lambdas', {
data_segm <- fx_vars %>% segmentation(data = mtpl_be,
type = 'lambdas',
values = 0.0001)
expect_is(data_segm, 'data.frame')
expect_equal(nrow(data_segm), nrow(mtpl_be))
expect_equal(ncol(data_segm), ncol(mtpl_be) + length(fx_vars))
expect_true(all(paste0(c('ageph', 'bm', 'coverage', 'fuel', 'bm_fuel', 'ageph_coverage'), '_') %in% names(data_segm)))
expect_true(all(sapply(paste0(c('ageph', 'bm', 'coverage', 'fuel', 'bm_fuel', 'ageph_coverage'), '_'), function(x) class(data_segm[[x]])) == 'factor'))
expect_equal(sum(is.na(data_segm)), 0)
})
test_that('output is of the expected format when using ngroups', {
data_segm <- fx_vars %>% segmentation(data = mtpl_be,
type = 'ngroups',
values = setNames(c(7, 6, 2, 2, 3, 1), c('ageph', 'bm', 'coverage', 'fuel', 'bm_fuel', 'ageph_coverage')))
expect_is(data_segm, 'data.frame')
expect_equal(nrow(data_segm), nrow(mtpl_be))
expect_equal(ncol(data_segm), ncol(mtpl_be) + length(fx_vars))
expect_true(all(paste0(c('ageph', 'bm', 'coverage', 'fuel', 'bm_fuel', 'ageph_coverage'), '_') %in% names(data_segm)))
expect_true(all(sapply(paste0(c('ageph', 'bm', 'coverage', 'fuel', 'bm_fuel', 'ageph_coverage'), '_'), function(x) class(data_segm[[x]])) == 'factor'))
expect_true(all(sapply(paste0(c('ageph', 'bm', 'coverage', 'fuel', 'bm_fuel', 'ageph_coverage'), '_'), function(x) length(unique(data_segm[[x]]))) == c(7, 6, 2, 2, 3, 1)))
expect_equal(sum(is.na(data_segm)), 0)
})
test_that('an error is produced when the wrong type of segmentation is asked', {
expect_error(fx_vars %>% segmentation(data = mtpl_be,
type = 'something_else',
values = NULL),
'The type of segmentation must be ngroups or lambdas.')
})
test_that('an error is produced when lambda is specified in the wrong format', {
expect_error(fx_vars %>% segmentation(data = mtpl_be,
type = 'lambdas',
values = c(0.001, 0.00005, 0.1)),
'Values must either be a single numeric value of a vector of the same length as fx_vars.')
expect_error(fx_vars %>% segmentation(data = mtpl_be,
type = 'ngroups',
values = setNames(c(7, 6, 2, 2, 3, 1), c('ageph', 'bm', 'coverage', 'fuel', 'bm_fuel', 'ageph_power'))),
'The names in values must match the comment attributes of the effects in fx_vars.')
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.