#'@importFrom Rdpack reprompt
NULL
#' Aggregates sub-daily raster time series to daily means.
#'
#' \code{dailyMeans} aggregates raster based time series
#' (\code{RasterBrick} or \code{RasterStack} object, see:
#' \code{\link[raster]{Raster-class}}) on a sub-daily basis
#' by computing the respective daily mean values for each
#' raster cell.
#'
#' @param variable A \code{RasterBrick} or \code{RasterStack} object with values on a sub-daily
#' resolution.
#' @param cores The number of cores to be used in parallel computing.
#' @param timedate A \code{POSIXct} vector containing the time
#' information for each band/layer of \code{variable}.
#' @param clcall A function passed to \code{\link[parallel]{clusterCall}}.
#' @return A list with the first element representing the aggregated
#' raster time series with daily mean values as a \code{RasterBrick} and
#' the second element a \code{POSIXct} vector containing the date information
#' (i.e. the days).
#' @seealso
#' @examples #
#' @export
dailyMeans <- function(variable, cores = 10, timedate, clcall = NULL){
# extract time information from variable
z <- timedate
z <- strftime(z, format = "%Y-%m-%d")
# set up cluster
cl <- makeCluster(cores, outfile="", type = "PSOCK")
registerDoParallel(cl)
if(!is.null(clcall)){
clusterCall(cl, clcall)
}
# calculate the daily mean of variable
dmean <-
foreach(step_i = unique(z), .packages = c("raster"), .combine = stack) %dopar%{
dmean1 <- calc(variable[[which(z == step_i)]], fun = mean)
}
# convert to RasterBrick object
dmean <- brick(dmean)
# stop cluster
stopCluster(cl)
# return result
return(list(variable = dmean, day = unique(z)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.