Description Usage Arguments Details Value Author(s) References See Also Examples
Calculates the distance from a consensus for a series of pathway fingerprints, accounting only for significantly high or low (-1 or 1) pathways in the consensus
1 | consensusDistance(consensus, fingerprintframe)
|
consensus |
consensus fingerprint |
fingerprintframe |
dataframe of sample fingerprints from which the distance will be calculated |
The consensus fingerprint can be calculated using
consensusFingerprint
or alternatively can be a single
fingerprint vector
A dataframe with rows corresponding to each sample contained in the fingerprintframe with the following columns
distance |
Manhattan distance of sample from the consensus fingerprint, scaled by the maximum possible distance |
pvalue |
p-value representing the probabilty that the samples are not phenotypically matched. N.B. this is only valid when the fingerprint frame represents a sufficiently broad coverage of phenotypes, e.g. the GEO corpus. This p-value is based on an assumption that the distances are normally distributed |
Gabriel Altschuler
Altschuler, G. M., O. Hofmann, I. Kalatskaya, R. Payne, S. J. Ho Sui, U. Saxena, A. V. Krivtsov, S. A. Armstrong, T. Cai, L. Stein and W. A. Hide (2013). "Pathprinting: An integrative approach to understand the functional basis of disease." Genome Med 5(7): 68.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | require(pathprintGEOData)
library(SummarizedExperiment)
# load the data
data(SummarizedExperimentGEO)
ds = c("chipframe", "genesets",
"pathprint.Hs.gs","platform.thresholds", "pluripotents.frame")
data(list = ds)
# extract part of the GEO.fingerprint.matrix and GEO.metadata.matrix
GEO.fingerprint.matrix = assays(geo_sum_data[,300000:350000])$fingerprint
GEO.metadata.matrix = colData(geo_sum_data[,300000:350000])
# free up space by removing the geo_sum_data object
remove(geo_sum_data)
# Extract common GSMs since we only loaded part of the geo_sum_data object
common_GSMs <- intersect(pluripotents.frame$GSM,colnames(GEO.fingerprint.matrix))
# search for pluripotent arrays
# create consensus fingerprint for pluripotent samples
pluripotent.consensus<-consensusFingerprint(
GEO.fingerprint.matrix[,common_GSMs], threshold=0.9)
# calculate distance from the pluripotent consensus
geo.pluripotentDistance<-consensusDistance(
pluripotent.consensus, GEO.fingerprint.matrix)
# plot histograms
par(mfcol = c(2,1), mar = c(0, 4, 4, 2))
geo.pluripotentDistance.hist<-hist(geo.pluripotentDistance[,"distance"],
nclass = 50, xlim = c(0,1), main = "Distance from pluripotent consensus")
par(mar = c(7, 4, 4, 2))
hist(geo.pluripotentDistance[pluripotents.frame$GSM, "distance"],
breaks = geo.pluripotentDistance.hist$breaks, xlim = c(0,1),
main = "", xlab = "above: all GEO, below: curated pluripotent samples")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.