pluripotents.frame: Manually curated list of pluripotent arrays

Description Usage Format Source References See Also Examples

Description

A manually compiled list of pluripotent arrays (induced pluripotent cells and embryonic stem cells) together with their GEO IDs and descriptions

Usage

1

Format

A data frame with 278 observations on the following 5 variables.

GSM

GEO sample ID

GSE

GEO series ID

GPL

GEO platform ID

source

GEO description - Source

Characteristics

GEO description - Characteristic

Source

http://www.ncbi.nlm.nih.gov/geo/

References

Altschuler, G. M., O. Hofmann, I. Kalatskaya, R. Payne, S. J. Ho Sui, U. Saxena, A. V. Krivtsov, S. A. Armstrong, T. Cai, L. Stein and W. A. Hide (2013). "Pathprinting: An integrative approach to understand the functional basis of disease." Genome Med 5(7): 68.

See Also

consensusDistance, consensusFingerprint

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
require(pathprintGEOData)
library(SummarizedExperiment)

# load  the data
data(SummarizedExperimentGEO)

ds = c("chipframe", "genesets","pathprint.Hs.gs",
    "platform.thresholds","pluripotents.frame")
data(list = ds)

# extract part of the GEO.fingerprint.matrix and GEO.metadata.matrix
GEO.fingerprint.matrix = assays(geo_sum_data[,300000:350000])$fingerprint
GEO.metadata.matrix = colData(geo_sum_data[,300000:350000])

# Extract common GSMs since we only loaded part of the geo_sum_data object
common_GSMs <- intersect(pluripotents.frame$GSM,colnames(GEO.fingerprint.matrix))

# free up space by removing the geo_sum_data object
remove(geo_sum_data)

head(pluripotents.frame)

# Use pathway fingerprints to search for
# additional pluripotent arrays across GEO
# create consensus pluripotent fingerprint
pluripotent.consensus<-consensusFingerprint(
    GEO.fingerprint.matrix[,common_GSMs], threshold=0.9)

# calculate distance from the pluripotent consensus
geo.pluripotentDistance<-consensusDistance(
    pluripotent.consensus, GEO.fingerprint.matrix)

# plot histograms
par(mfcol = c(2,1), mar = c(0, 4, 4, 2))
geo.pluripotentDistance.hist<-hist(geo.pluripotentDistance[,"distance"],
    nclass = 50, xlim = c(0,1), main = "Distance from pluripotent consensus")
par(mar = c(7, 4, 4, 2))
hist(geo.pluripotentDistance[pluripotents.frame$GSM, "distance"],
        breaks = geo.pluripotentDistance.hist$breaks, xlim = c(0,1), 
    main = "", xlab = "above: all GEO, below: pluripotent samples")

hidelab/pathprint documentation built on May 17, 2019, 3:57 p.m.