pipeline.geneLists <- function(env)
{
#### Gene Localization Table ####
spot.list <- env[[paste("spot.list.", env$preferences$standard.spot.modules,sep="")]]
gene.module.info <- rep("",nrow(env$indata))
names(gene.module.info) <- rownames(env$indata)
for( x in names(spot.list$spots) )
{
gene.module.info[ spot.list$spots[[x]]$genes ] <- x
}
o <- order(env$som.result$feature.BMU)
out <- data.frame(ID=rownames(env$indata)[o],
Symbol=env$gene.info$names[o],
MeanExpression=env$indata.gene.mean[o],
Metagene=env$gene.info$coordinates[o],
Module=gene.module.info[o],
Chromosome=paste( env$gene.info$chr.name[rownames(env$indata)[o]], env$gene.info$chr.band[rownames(env$indata)[o]]),
Description=env$gene.info$descriptions[o])
filename <- file.path("CSV Sheets", "Gene localization.csv")
util.info("Writing:", filename)
env$csv.function(out, filename, row.names=FALSE)
#### Sample GSZ Table ####
filename <- file.path( "CSV Sheets", "Sample GSZ scores.csv")
util.info("Writing:", filename)
env$csv.function(env$samples.GSZ.scores, filename)
#### sample-wise gene and gene set tables ####
# if(ncol(env$indata) < 1000)
# {
# dirnames <- c("global"=file.path(env$output.paths["CSV"], "Gene Lists - Global"),
# # "local"=file.path(output.paths["CSV"], "Gene Lists - Local"),
# "set"=file.path(env$output.paths["CSV"], "Gene Set Lists - Global"))
#
# for (dirname in dirnames)
# {
# dir.create(dirname, showWarnings=FALSE)
# }
#
# #### Global Gene Lists ####
# util.info("Writing:", file.path(dirnames["global"], "*.csv"))
#
# genes.spot.assoc <- rep("", nrow(env$indata) )
# names(genes.spot.assoc) <- rownames(env$indata)
#
# spot.list <- env[[paste("spot.list.",env$preferences$standard.spot.modules,sep="")]]
# for( i in seq_along(spot.list$spots) ) genes.spot.assoc[ spot.list$spots[[i]]$genes ] <- names(spot.list$spots)[i]
#
# for (m in 1:ncol(env$indata))
# {
# o <- order(env$p.g.m[,m])
#
# out <- data.frame(Rank=c(1:nrow(env$indata)),
# ID=rownames(env$indata)[o],
# Symbol=env$gene.info$names[o])
#
# out <- cbind(out,
# logFC=env$indata[o, m],
# p.value=env$p.g.m[o, m],
# fdr=env$fdr.g.m[o, m],
# Metagene=env$gene.info$coordinates[o],
# Spot=genes.spot.assoc[o],
# Chromosome=paste( env$gene.info$chr.name[rownames(env$indata)[o]], env$gene.info$chr.band[rownames(env$indata)[o]]),
# Description=env$gene.info$descriptions[o])
#
# basename <- paste(make.names(colnames(env$indata)[m]), ".csv", sep="")
# f <- file(file.path(dirnames["global"], basename), "w")
#
# writeLines("Sample Summary:", f)
# writeLines("", f)
# writeLines(paste("%DE:" ,"", round(env$perc.DE.m[colnames(env$indata)[m]], 2), sep=";"), f)
# writeLines(paste("#genes with fdr < 0.2" ,"", length(which(env$fdr.g.m[,m] < 0.2)) , sep=";"), f)
# writeLines(paste("#genes with fdr < 0.1" ,"", length(which(env$fdr.g.m[,m] < 0.1)) , sep=";"), f)
# writeLines(paste("#genes with fdr < 0.05" ,"", length(which(env$fdr.g.m[,m] < 0.05)) , sep=";"), f)
# writeLines(paste("#genes with fdr < 0.01" ,"", length(which(env$fdr.g.m[,m] < 0.01)) , sep=";"), f)
# writeLines("", f)
# writeLines(paste("<FC> =", round(mean(env$indata[,m]), 2)) ,f)
# writeLines(paste("<p-value> =", round(10 ^ mean(log10(env$p.g.m[,m])), 2)) ,f)
# writeLines(paste("<fdr> =", round(mean(env$fdr.g.m[,m]), 2)) ,f)
# writeLines("", f); writeLines("", f); writeLines("", f)
# writeLines("Gene Statistics", f)
# writeLines("", f)
# env$csv.function(out, file=f, row.names=FALSE)
#
# close(f)
# }
#
#
# #### Gene Set Lists ####
# if (env$preferences$activated.modules$geneset.analysis)
# {
# util.info("Writing:", file.path(dirnames["set"], "*.csv"))
#
# for (m in 1:ncol(env$indata))
# {
# gs.gsz <- env$spot.list.samples[[m]]$GSZ.score
#
# pos.gs.gsz <- round(sort(gs.gsz[which(gs.gsz>0)],decreasing=TRUE), 8)
# neg.gs.gsz <- round(sort(gs.gsz[which(gs.gsz<0)],decreasing=FALSE), 8)
#
# pos.gs.p <- env$spot.list.samples[[m]]$GSZ.p.value[names(pos.gs.gsz)]
# neg.gs.p <- env$spot.list.samples[[m]]$GSZ.p.value[names(neg.gs.gsz)]
#
# pos.gs.fdr <- rep("",length(pos.gs.gsz))
# neg.gs.fdr <- rep("",length(neg.gs.gsz))
#
# if(ncol(env$indata)<100)
# {
# pos.gs.fdr <- fdrtool(pos.gs.p,statistic="pvalue",verbose=FALSE,plot=FALSE)$lfdr
# neg.gs.fdr <- fdrtool(neg.gs.p,statistic="pvalue",verbose=FALSE,plot=FALSE)$lfdr
# }
#
# pos.gs.gsz <- c(pos.gs.gsz, rep(0, max(0, length(neg.gs.gsz) - length(pos.gs.gsz))))
# neg.gs.gsz <- c(neg.gs.gsz, rep(0, max(0, length(pos.gs.gsz) - length(neg.gs.gsz))))
# pos.gs.p <- c(pos.gs.p, rep(1, max(0, length(neg.gs.p) - length(pos.gs.p))))
# neg.gs.p <- c(neg.gs.p, rep(1, max(0, length(pos.gs.p) - length(neg.gs.p))))
# pos.gs.fdr <- c(pos.gs.fdr, rep(1, max(0, length(neg.gs.fdr) - length(pos.gs.fdr))))
# neg.gs.fdr <- c(neg.gs.fdr, rep(1, max(0, length(pos.gs.fdr) - length(neg.gs.fdr))))
#
# gs.info <- data.frame("Rank"=c(seq_along(pos.gs.gsz)),
# "Upregulated"=names(pos.gs.gsz),
# "GSZ"=pos.gs.gsz,
# "p.value"=paste(pos.gs.p," ."),
# "fdr"=paste(pos.gs.fdr," ."),
# "."=rep("",length(pos.gs.gsz)),
# "Downregulated"=names(neg.gs.gsz),
# "GSZ."=neg.gs.gsz,
# "p.value."=paste(neg.gs.p," ."),
# "fdr."=paste(neg.gs.fdr," ."))
#
# basename <- paste(make.names(colnames(env$indata)[m]), ".csv", sep="")
# env$csv.function(gs.info, file.path(dirnames["set"], basename), row.names=FALSE)
# }
# }
#
# }
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.