#' Signal at all ORFs genome-wide (meta ORF)
#'
#' This function allows you to pull out the ChIP signal over all ORFs in the genome. It collects the
#' signal over each ORF plus both flanking regions (1/2 the length of the ORF on each side) and
#' scales them all to the same value (1000). This means that for two example genes with lengths of
#' 500 bp and 2 kb, flanking regions of 250 bp and 1 kb, respectively, will be collected up and
#' downstream. The whole region is then rescaled to a length of 1000, corresponding to a gene length
#' of 500 plus 250 for each flanking region. After scaling, a loess model of the signal is built and
#' used to output predictions of the signal at each position between 1 and 1000. \cr
#' The function takes as input the wiggle data as a list of 16 chromosomes.
#' (output of \code{\link{readall_tab}}).
#' \cr \cr
#' \strong{Note:} Our wiggle data always contains gaps with missing chromosome coordinates
#' and ChIP-seq signal. The way this function deals with that is by skipping affected genes.
#' The number of skipped genes in each chromosome is printed to the console, as well as the
#' final count (and percentage) of skipped genes. \cr
#' @param inputData As a list of the 16 chr wiggle data (output of \code{\link{readall_tab}}).
#' No default.
#' @param gff Optional dataframe of the gff providing the ORF cordinates. Must be provided if
#' \code{gffFile} is not. No default. Note: You can use the function \code{\link{gff_read}} in
#' hwglabr to load your selected gff file.
#' @param gffFile Optional string indicating path to the gff file providing the ORF cordinates.
#' Must be provided if \code{gff} is not. No default.
#' @param loessSpan Number specifying \code{span} argument for \code{loess} function (the smoothing
#' parameter alpha). This controls the degree of smoothing of the signal.
#' Defaults to \code{0.05}.
#' @param saveFile Boolean indicating whether output should be written to a .txt file (in current
#' working directory). If \code{saveFile = FALSE}, output is returned to screen or an
#' R object (if assigned). Defaults to \code{FALSE}.
#' @return A local data frame with four columns:
#' \enumerate{
#' \item \code{chr} Chromosome number
#' \item \code{position} Nucleotide coordinate (in normalized total length of 1 kb)
#' \item \code{signal} ChIP-seq signal at each position (1 to 1000)
#' \item \code{gene} Systematic gene name
#' }
#' @examples
#' \dontrun{
#' signal_at_orf(WT, gff = gff)
#'
#' signal_at_orf(WT, gffFile = S288C_annotation_modified.gff,
#' loessSpan = 0.1, saveFile = TRUE)
#' }
#' @export
signal_at_orf <- function(inputData, gff, gffFile, loessSpan = 0.05, saveFile = FALSE) {
ptm <- proc.time()
# gff
if (missing(gffFile) & missing(gff)) {
stop("No gff data provided.\n",
"You must provide either a lodaded gff as an R data frame ('gff' argument)
or the path to a gff file to load ('gffFile' argument).",
call. = FALSE)
} else if (!(missing(gffFile) | missing(gff))) {
stop("Two gff data sources provided.\n",
"Please provide either a gff R data frame ('gff' argument)
or the path to a gff file ('gffFile' argument), not both.\n",
call. = FALSE)
} else if (missing(gff)) {
gff <- hwglabr::gff_read(gffFile)
message('Loaded gff file...')
}
# Check reference genome for both the input data and the gff file; make sure they match
chrom_S288C <- c("I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX", "X",
"XI", "XII", "XIII", "XIV", "XV", "XVI")
chrom_SK1 <- c('01', '02', '03', '04', '05', '06', '07', '08', '09', '10',
'11', '12', '13', '14', '15', '16')
check_S288C <- any(grep('chrI.', names(inputData), fixed = TRUE))
check_SK1 <- any(grep('chr01.', names(inputData), fixed = TRUE))
check_gff_S288C <- any(gff[, 1] == 'chrI')
check_gff_SK1 <- any(gff[, 1] == 'chr01')
if (check_S288C != check_gff_S288C) {
stop("The reference genomes in the input data and the gff do not seem to match.\n",
"Please provide data and gff for the same reference genome.\n", call. = FALSE)
} else if (check_S288C & check_gff_S288C) {
message('Detected ref. genome - S288C')
chrom <- chrom_S288C
} else if (check_SK1 & check_gff_SK1) {
print('Detected ref. genome - SK1')
chrom <- chrom_SK1
} else stop("Did not recognize reference genome.
Check that chromosome numbers are in the usual format, e.g. 'chrI' or 'chr01'.")
if (!requireNamespace("dplyr", quietly = TRUE)) {
stop("R package 'dplyr' needed for this function to work. Please install it.\n",
"install.packages('dplyr')", call. = FALSE)
}
message('The following types of features are present in the gff data you provided
(they will all be included in the analysis):')
for(i in 1:length(unique(gff[, 3]))) {
message(unique(gff[, 3])[i])
}
message('\nCollecting signal...')
message('(Skip genes with missing coordinates and signal in wiggle data)')
# Create data frames to collect final data for all chrs
plus_final <- data.frame()
minus_final <- data.frame()
# Keep track of total and non-skipped genes, to print info at the end
number_genes <- 0
number_skipped_genes <- 0
for(i in 1:length(inputData)) {
chrNum <- paste0('chr', chrom[i])
message(paste0(chrNum, ':'))
# Index of ChIP data list item corresponding to chrom to analyze
# Add '.' to make it unique (otherwise e.g. 'chrI' matches 'chrII' too)
listIndex <- grep(paste0(chrNum, '.'), names(inputData), fixed = TRUE)
chromData <- inputData[[listIndex]]
colnames(chromData) <- c('position', 'signal')
############################### plus strand ################################
# Create data frame to collect final data for all genes in chr
plus_sigs <- data.frame()
# Get all genes on "+" strand of current chromosome
chromGff <- gff[gff[, 1] == chrNum & gff[, 7] == '+', ]
geneCount <- 0
for(j in 1:nrow(chromGff)) {
# Skip if gene coordinates not in ChIPseq data
# Comparison below will not work if dplyr was loaded when the wiggle data was loaded
# (because of dplyr's non standard evaluation: data is in tbl_df class)
# Workaround: convert to data.frame first
if(!chromGff[j, 4] %in% as.data.frame(chromData)[, 1] |
!chromGff[j, 5] %in% as.data.frame(chromData)[, 1]) {
next
}
# Collect flanking regions scaled according to ratio gene length / 1 kb
gene_leng <- chromGff[j, 5] - chromGff[j, 4]
start <- chromGff[j, 4] - round((0.5 * gene_leng))
end <- chromGff[j, 5] + round((0.5 * gene_leng))
full_leng <- (end - start) + 1
gene <- chromGff[j, 9]
# Pull out signal
sig_gene <- chromData[which(chromData[, 1] >= start & chromData[, 1] <= end), ]
# Skip if there are discontinuities in the data (missing position:value pairs)
if(nrow(sig_gene) != full_leng) next
# Normalize to segment length of 1000
sig_gene$position <- (sig_gene$position - start) + 1
sig_gene$position <- sig_gene$position * (1000 / full_leng)
# Genes of different sizes have different numbers of positions; small genes
# (<1000bp) cannot produce signal values for all 1000 positions and will have gaps
# This means that longer genes with more signal values per each position in the
# sequence of 1000 positions will contribute more to the final output.
# In order to avoid this, first build a Loess model with low span argument (alpha)
# of the signal and then project it onto 1000 positions by using the model
# to predict the signal
model <- loess(signal ~ position, sig_gene,
control = loess.control(surface = "direct"),
span = loessSpan)
signal <- predict(model, data.frame(position = seq(1, 1000, 1)), se = F)
sig_gene <- data.frame(position = seq(1, 1000, 1), signal)
# Make data frame for this gene
all <- data.frame(chr = paste0('chr', chrom[i]), sig_gene, gene)
# To collect all genes
plus_sigs <- dplyr::bind_rows(plus_sigs, all)
geneCount <- geneCount + 1
}
message(paste0('... + strand: ', geneCount, ' genes (skipped ', j - geneCount, ')'))
# Keep track of total and non-skipped genes, to print info at the end
number_genes <- number_genes + j
number_skipped_genes <- number_skipped_genes + (j - geneCount)
# To collect all chrs
plus_final <- dplyr::bind_rows(plus_final, plus_sigs)
############################## minus strand ##################################
# Create data frame to collect final data for all genes in chr
minus_sigs <- data.frame()
# Get all genes on "-" strand of current chromosome
chromGff <- gff[gff[, 1] == chrNum & gff[, 7] == '-', ]
geneCount <- 0
for(j in 1:nrow(chromGff)) {
# Skip if gene coordinates not in ChIPseq data
# Comparison below will not work if dplyr was loaded when the wiggle data was loaded
# (because of dplyr's non standard evaluation: data is in tbl_df class)
# Workaround: convert to data.frame first
if(!chromGff[j, 4] %in% as.data.frame(chromData)[, 1] |
!chromGff[j, 5] %in% as.data.frame(chromData)[, 1]) {
next
}
# Collect flanking regions scaled according to ratio gene length / 1 kb
gene_leng = chromGff[j, 5] - chromGff[j, 4]
start <- chromGff[j, 4] - round((0.5 * gene_leng))
end <- chromGff[j, 5] + round((0.5 * gene_leng))
full_leng <- (end - start) + 1
gene <- chromGff[j, 9]
# Pull out signal
sig_gene <- chromData[which(chromData[, 1] >= start & chromData[, 1] <= end), ]
# Skip if there are discontinuities in the data (missing position:value pairs)
if(nrow(sig_gene) != full_leng) next
# Normalize to segment length of 1000
sig_gene$position <- (sig_gene$position - start) + 1
sig_gene$position <- sig_gene$position * (1000 / full_leng)
# Genes of different sizes have different numbers of positions; small genes
# (<1000bp) cannot produce signal values for all 1000 positions and will have gaps
# This means that longer genes with more signal values per each position in the
# sequence of 1000 positions will contribute more to the final output.
# In order to avoid this, first build a Loess model with low span argument (alpha)
# of the signal and then project it onto 1000 positions by using the model
# to predict the signal
model <- loess(signal ~ position, sig_gene,
control = loess.control(surface = "direct"),
span = loessSpan)
signal <- predict(model, data.frame(position = seq(1, 1000, 1)), se = F)
sig_gene <- data.frame(position = seq(1, 1000, 1), signal)
# Reverse the order of the position values
sig_gene$position <- (1000 - sig_gene$position) + 1
# Make data frame for this gene
all <- data.frame(chr = paste0('chr', chrom[i]), sig_gene, gene)
# To collect all genes
minus_sigs <- dplyr::bind_rows(minus_sigs, all)
geneCount <- geneCount + 1
}
# To collect all chrs
minus_final <- dplyr::bind_rows(minus_final, minus_sigs)
message(paste0('... - strand: ', geneCount, ' genes (skipped ', j - geneCount, ')\n'))
# Keep track of total and non-skipped genes, to print info at the end
number_genes <- number_genes + j
number_skipped_genes <- number_skipped_genes + (j - geneCount)
}
# Merge '+' and '-' strand data
mergedStrands <- dplyr::bind_rows(plus_final, minus_final)
colnames(mergedStrands) <- c("chrom", "position", "signal", "gene")
# Sort by gene and position
mergedStrands <- mergedStrands[order(mergedStrands$gene, mergedStrands$position), ]
message(paste0('Completed in ', round((proc.time()[3] - ptm[3]) / 60, 2), ' min.'))
# Print info on total and non-skipped genes
message('------')
message(paste0('Skipped ', number_skipped_genes, ' of a total of ', number_genes,
" genes (", round((number_skipped_genes * 100 / number_genes), 1),
"%)."))
message('------')
if(saveFile) {
message(paste0('Saving file...'))
if(check_S288C) {
write.table(mergedStrands, paste0(deparse(substitute(inputData)),
"_S288C_metaORF.txt"), sep = "\t", quote = FALSE,
row.names = FALSE)
message('Done!')
} else {
write.table(mergedStrands, paste0(deparse(substitute(inputData)),
"_SK1_metaORF.txt"), sep = "\t", quote = FALSE,
row.names = FALSE)
message('Done!')
}
} else {
message('Done!')
return(mergedStrands)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.